第十一章全等三角形
一、全等三角形形的定义
1、能够完全重合的两个三角形叫做全等三角形。
注意:
(1)两个三角形全等,互相重合的顶点叫做对应点,互相重合的边叫做对应边,互相重合的角叫做对应角。
(2)“能够完全重合”是指在一定的叠放下,可以完全重合,不是胡乱摆放都能重合。
(3)一个三角形经过哪些变化可以得到它的全等形?
一个三角形经过平移、翻折、旋转可以得到它的全等形。
2、全等三角形的性质:
(1):全等三角形的对应边相等、对应角相等。
(2):全等三角形的周长相等、面积相等。
(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3、三角形全等的判定定理(三角形全等的识别方法):
(1)三边对应相等的两个三角形全等,简写成“边边边”和“SSS”。
(2)两边和他们的夹角对应相等的两个三角形全等,简写成“边角边”和“SAS”。
(3)两角和他们的夹边对应相等的两个三角形全等,简写成“角边角”和“ASA”。
(4)两个角和其中一个角的对边对应相等的两个三角形全等,简写成“角角边”和“AAS”。
(5)斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”和“HL”。
注明:SSA、AAA不能识别两个三角形全等,识别两个三角形全等时,必须有边的参与,如果有两边一角对应相等时,角必须是两边的夹角。
二、角平分线的性质定理及逆定理
注明:点到直线的距离,即点到直线的垂线段的长度。
3、三角形的内心
利用角的平分线的性质定理可以导出:
三角形的三个内角的角平分线交于一点I,此点叫做三角形的内心,它到三边的距离相等。
说明:(1)三角形三条角平分线交于一点,这个点到三边的距离相等。
(2)三角形两个外角的角平分线也交于一点,这个点到三边所在的直线的距离相等。
(3)三角形外角角平分线的交点共有3个,所以到三角形三边所在的直线的距离相等的点共有4个。
第十二章轴对称
一、轴对称图形的概念:
如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,。
如:正方形、长方形、圆形一定是轴对称图形;三角形、四边形、梯形不一定是轴对称图形;平行四边形一定不是轴对称图形。
注意:
(1)一个轴对称图形的对称轴不一定只有一条,如正方形有4条对称轴、长方形有2条对称轴、圆形有无数条对称轴、正三角形有3条对称轴、正n边形有n条对称轴。
(2)轴对称图形需要注意的重点:①一个图形;
②沿一条直线折叠,对折的两部分能完全重合(即重合到自身上)。
3、什么叫做线段的垂直平分线(中垂线)
经过线短的中点且与这条线段垂直的直线叫线段的垂直平分线。
二、轴对称的概念:
把一个图形沿着某一条直线翻折过去,如果它能够和另一个图形完全重合,那么就说这两个图形成轴对称,这条直线就是对称轴。两个图形中经过翻折之后互相重合的点叫做对应点,也叫做对称点。
注意:(1)两个图形成轴对称和轴对称图形的概念,前提不一样,前者是两个图形,后者是一个图形。
(2)成轴对称的两个图形不仅大小、形状一样而且与位置有关。
三、轴对称的性质:
1、关于某条直线对称的图形是全等形;
2、如果两个图形关于某条直线
第十一章全等三角形 来自淘豆网m.daumloan.com转载请标明出处.