下载此文档

数列的通项公式与求和的常用方法.doc


文档分类:中学教育 | 页数:约19页 举报非法文档有奖
1/19
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/19 下载此文档
文档列表 文档介绍
题目 高中数学复习专题讲座数列的通项公式和求和的常用方法
高考要求
数列是函数概念的继续和延伸,数列的通项公式及前n项和公式都可以看作项数n的函数,是函数思想在数列中的应用 数列以通项为纲,数列的问题,最终归结为对数列通项的研究,而方法 (1)问中项和和的关系为常规方法,(2)问中把3拆解为4-1,再利用二项式定理,寻找数列通项在形式上相通之处堪称妙笔;(3)问中挖掘出n和r的关系,正确表示Br,问题便可迎刃而解 (精品文档请下载)
解 (1)由An=(an-1),可知An+1=(an+1-1),
∴an+1-an= (an+1-an),即=3,而a1=A1= (a1-1),得a1=3,所以数列是以3为首项,公比为3的等比数列,数列{
an}的通项公式an=3n (精品文档请下载)
(2)∵32n+1=3·32n=3·(4-1)2n
=3·[42n+C·42n-1(-1)+…+C·4·(-1)+(-1)2n]=4n+3,
∴32n+1∈{bn}
而数32n=(4-1)2n
=42n+C·42n-1·(-1)+…+C·4·(-1)+(-1)2n=(4k+1),
∴32n{bn},而数列{an}={a2n+1}∪{a2n},∴dn=32n+1
(3)由32n+1=4·r+3,可知r=,
∴Br=,
例3 设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的自然数n,an和2的等差中项等于
Sn和2的等比中项 (精品文档请下载)
(1)写出数列{an}的前3项
(2)求数列{an}的通项公式(写出推证过程)
(3)令bn=(n∈N*),求 (b1+b2+b3+…+bn-n)
解析 (1)由题意,当n=1时,有,S1=a1,
∴,解得a1=2 当n=2时,有,S2=a1+a2,将a1=2代入,整理得(a2-2)2=16,由a2>0,解得a2=6 (精品文档请下载)
当n=3时,有,S3=a1+a2+a3,
将a1=2,a2=6代入,整理得(a3-2)2=64,由a3>0,解得a3=10
故该数列的前3项为2,6,10
(2)解法一 由(1)猜测数列{an} 有通项公式an=4n-2
下面用数学归纳法证明{an}的通项公式是an=4n-2,(n∈N*)
①当n=1时,因为4×1-2=2,,又在(1)中已求出a1=2,所以上述结论成立
②假设当n=k时,结论成立,即有ak=4k-2,由题意,有,将ak=4k-2 代入上式,解得2k=,得Sk=2k2,(精品文档请下载)
由题意,有,Sk+1=Sk+ak+1,
将Sk=2k2代入得()2=2(ak+1+2k2),
整理得ak+12-4ak+1+4-16k2=0,由ak+1>0,解得ak+1=2+4k,
所以ak+1=2+4k=4(k+1)-2,
即当n=k+1时,上述结论成立
根据①②,上述结论对所有的自然数n∈N*成立
解法二 由题意知,(n∈N*) 整理得,Sn=(an+2)2,
由此得Sn+1=(an+1+2)2,∴an+1=Sn+1-Sn=[(an+1+2)2-(an+2)2] (精品文档请下载)
整理得(an+1+an)(an+1-an-4)=0,
由题意知an+1+an≠0,∴an+1-an=4,
即数列{an}为等差数列,其中a1=2,公差d=4
∴an=a1+(n-1)d=2+4(n-1),即通项公式为an=4n-2
解法三 由得,(n∈N*)     ①,
所以有            ②,
由②式得,
整理得Sn+1-2·+2-Sn=0,
解得,
由于数列{an}为正项数列,而,
因此,
即{Sn}是以为首项,以为公差的等差数列
所以= +(n-1) =n,Sn=2n2,
故an=即an=4n-2(n∈N*)
(3)令cn=bn-1,那么cn=
学生稳固练习
1 设zn=()n,(n∈N*),记Sn=|z2-z1|+|z3-z2|+…+|zn+1-zn|,那么Sn=_________ (精品文档请下载)
2 作边长为a的正三角形的内切圆,在这个圆内作新的内接正三角形,在新的正三角形内再作内切圆,如此继续下去,所有这些圆的周长之和及面积之和分别为_________ (精品文档请下载)
3 数列{an}满足a1=2,对于任意的n∈N*都有an>0,且(n+1)an2+an·an+1-nan+12=0,又知数列{bn}的通项为bn=2n-1+1 (精品文档请下载)
(1)求数列{an}的通项an及它的前n项和Sn;
(2)求数列{bn

数列的通项公式与求和的常用方法 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数19
  • 收藏数0 收藏
  • 顶次数0
  • 上传人qnrdwb
  • 文件大小1.05 MB
  • 时间2022-02-14