奥数:方阵问题
教学内容:第十一讲方阵问题
在日常生活中,我们经常见到把人或物排成正方形的形状,比如用花盆摆成正方形,同学们要参加运动会入场式,要进行队列操练,解放军排着整齐的方队接受检阅等,无论是训练或接受检阅,都要按一定知原每行人数=(去掉一行一列的人数+1)÷2
即:原来每行人数:(27+1)÷2=14(人)
原来准备参加表演的人数:14×14=196(人)
答:四年级原准备196人参加表演。
,如果去掉4行4列,那么要减少多少人?
分析与解答1:把去掉4行4列转化为一行一列的去掉,就可用例6的结论:
去掉一行一列的总人数=原每行人数×2-1
反复利用4次这个公式,只要注意“原每行人数”的变化,即可列式为:
去掉4行4列的总人数=20×2-1+(20-1)×2-1+(20-2)×2-1+(20-3)×2-1
=40-1=38-1+36-1+34-1
=144(人)
分析与解答2:我们还可以这样想:原来是一个7行7列的方阵,若去掉4行4列后,仍剩下一个小正方形方阵,因此去掉4行4列的总人数=原正方形方阵每边人数-4,即去掉的总人数
=20×20-(20-4)×(20-4)
=400-256
=144(人)
答:去掉4行4列,要减少144人。
,如果四个角都装一盏且每边装12盏,那么这个舞厅四周共装彩灯多少盏?
分析与解1:自己画图可以看出,角上的四盏灯各属于两行,所以彩灯总数应为: 12×4-4=44(盏)
分析与解2:还可以把彩灯分成相等的四部分,因此彩灯总数为:(12-1)×4=44(盏)
答:这个舞厅四周共装彩灯44盏。
4.“六一”儿童节前夕,在校园雕塑的周围,用204盆鲜花围成了一个每边三层的方阵,请你求出最外面一层每边有鲜花多少盆?
分析与解答:分析思路参见例6,最外层每边人数=总数÷4÷层数+层数
204÷4÷3+3=20(盆)
答:最外面一层每边有鲜花20盆
,排成一个方阵,最外层一周的人数为20人,请问:方阵最外层每边的人数是多少?这个方阵共有多少人?
分析:根据四周人数与每边人数的关系可知:
每边人数=四周人数÷4+1,可以求出这个方阵最外层每边的人数,那么这个方阵队列的总人数就可以求出来了。
解答:(1)方阵最外层每边的人数:20÷4+1=5+1=6(人)
(2)整个方阵共有学生人数:6×6=36(人)
答:方阵最外层每边的人数是6人,这个方阵共有36人。
,如果最外层每边有围棋子15个,明明摆这个方阵最里层一周共有多少枚棋子?摆这个三层空心方阵共用了多少枚棋子?
分析:(1)方阵每向里面一层,每边的个数就减少2个,知道最外面一层,每边放15个,可以求出最里层每边的个数,就可以求出最里层一周放棋子的总数。
(2)根据最外层每边放棋子的个数减去这个中空方阵的层数,再乘以层数,再乘以4,计算
出这个中空方阵共用棋子多少个。
解答:(1)最里层一周棋子的个数是:(15-2-2-1)×4=40(个)
(2)这个空心方阵共用的棋子数是:(15-3)×3×4=144(个)
答:这个方阵最里层一周有40个棋子;摆这个中空方阵共用144个棋子。
,只知道最外一层每边有12人,请你求出总人数。
分析与解:我们可以采用先求出每层人数再求总人数的方法进行
解答:由于最外层每边有12人,因此最外层一共有(12-1)×4=44人,又根据方阵相邻两层,外层比内层人数多8的特点,因此第二层有44-8=36人,第三层有36-8=28人,第四层有
28-8=20人。因此一共有44+36+28+20=128人。
还可以这样想,把四层中空方阵划分如例5的形状,我们发现每个长方形可以看成四排战士,每排有8人组成。因此一个长方形有8×4=32人,一共有4个长方形,32×4=128人。
当然还可以先把中空方阵看成中实方阵,然后再减去补上的小中实方阵人数,也可以求出一共有多少人,看成中实方阵后,最外一层每边12人,因此一共有12×12=144人。又因为在方阵中相邻两个正方形每边人数相差2,因此第二层每边有12-2=10人,第三层每边有10-2=8人,第四层每边有8-2=6人,第五层每边有6-2=4人。因此小的中实方阵有4×4=16人。144-6=128人就表示一共有战士的人数。
答:一共有128人。
,最外层共摆48
奥数:方阵问题 来自淘豆网m.daumloan.com转载请标明出处.