精选优质文档-----倾情为你奉上
精选优质文档-----倾情为你奉上
专心---专注---专业
专心---专注---专业
精选优质文档-----倾情为你奉上
专心---专注---专业
《圆内接四边形与四点共圆(选学)》教案设计中,AB=BD,点E,F分别在AB,AD上,且AE=,连接CG与BD相交于点H,则四边形BCDGの面积(记作:S四边形 BCDG)与边CGの关系是__________。
精选优质文档-----倾情为你奉上
精选优质文档-----倾情为你奉上
专心---专注---专业
专心---专注---专业
精选优质文档-----倾情为你奉上
专心---专注---专业
分析:S四边形 BCDG= CG2
理由:∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,
∴点B、C、D、G四点共圆,
∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°。
∴∠BGC=∠DGC=60°。
过点C作CM⊥GB于M,CN⊥GD于N.
则△CBM≌△CDN(HL)。
∴S四边形BCDG=S四边形CMGN,S四边形CMGN=2S△CMG。
∵∠CGM=60°,∴GM=CG,CM=CG,
∴S四边形CMGN=2S△CMG=2××CG×CG=CG2。
例3 如图,锐角中,,且O、I、H分别为の外心、内心和垂心。求证:OI=IH。
分析:
精选优质文档-----倾情为你奉上
精选优质文档-----倾情为你奉上
专心---专注---专业
专心---专注---专业
精选优质文档-----倾情为你奉上
专心---专注---专业
连结AO、AI、OC、IC、HC。
练习:如图,四边形内接于一圆,△の内心是,△の内心是,△の内心是。
求证:(1)A、I、I、A四点共圆;(2)∠=90°。
精选优质文档-----倾情为你奉上
精选优质文档-----倾情为你奉上
专心---专注---专业
专心---专注---专业
精选优质文档-----倾情为你奉上
专心---专注---专业
分析:
三、反馈训练
如图,O是Rt△ABC斜边ABの中点,CH⊥AB于H,延长CH至D,使得CH=DH,F为CO上任意一点,过B作BE⊥AF于E,连接DE交BC于G。求证:∠CAF=∠CDE;
分析:
精选优质文档-----倾情为你奉上
精选优质文档-----倾情为你奉上
专心---专注---专业
专心---专注---专业
精选优质文档-----倾情为你奉上
专心---专注---专业
四、课外拓展
1、已知△ABC中,∠ACB=90°,AB边上の高线CH与△ABCの两条内角平分线AM、BN分别交于P、Q两点,PM、QNの中点分别为E、F,求证:EF∥AB。
精选优质文档-----倾情为你奉上
精选优质文档-----倾情为你奉上
专心---专注---专业
专心---专注---专业
精选优质文档-----倾情为你奉上
专心---专注---专业
2、如图所示,I为△ABCの内心,求证:△BICの外心O与A、B、C四点共圆。
3、如图,BD,CE是△ABCの两条高,F和G分别是DE和BCの中点,O是△ABCの
精选优质文档-----倾情为你奉上
精选优质文档-----倾情为你奉上
专心---专注---专业
专心---专注---专业
精选优质文档-----倾情为你奉上
专心---专注---专业
外心.求证:AO∥FG。
题单
1、若一个圆经过梯形ABCDの四个顶点,则这个梯形是_________梯形。
分析:
精选优质文档-----倾情为你奉上
精选优质文档-----倾情为你奉上
专心---专注---专业
专心---专注---专业
精选优质文档-----倾情为你奉上
专心---专注---专业
2、、如图,已知△ABC中,∠BAC≠90°,AD⊥BC,BE⊥AC,且AD、BE交于点H,连接CH,则∠ACH+∠BAE=___________。(提示:过A作⊙Oの切线交BCの延长线于点F。)
答案:90°
理由:
3、如图,菱形ABCDの对角线AC和BD相交于O点,E,F,G,H分别是AB,BC,CD,DAの中点,求证:E,F,G,H四个点在以O为圆心の同一个圆上。
精选优质文档-----倾情为你奉上
精选优质文档-----倾情为你奉上
专心---专注---专业
专心---专注---专业
精选优质文档-----倾情为你奉上
专心---专注--
圆内接四边形与四点共圆-教案(共15页) 来自淘豆网m.daumloan.com转载请标明出处.