第 1 页 共 助于面积相等求出点到直线的距离。
(2)求两条异面直线间距离:一般先找出其公垂线,然后求其公垂线段的长。在不能干脆作出公垂线的状况下,可转化为线面距离求解(这种状况高考不做要求)。
(3)求点到平面的距离:一般找出(或作出)过此点与已知平面垂直的平面,利用面面垂直的性质过该点作出平面的垂线,进而计算;也可以利用“三棱锥体 积法”干脆求距离;有时干脆利用已知点求距离比较困难时,我们可以把点到平面的距离转化为直线到平面的距离,从而“转移”到另一点上去求“点到平面的距 离”。求直线与平面的距离及平面与平面的距离一般均转化为点到平面的距离来求解。
4熟记一些常用的小结论
诸如:正四面体的体积公式是;面积射影公式;“立平斜关系式”;最小角定理。弄清晰棱锥的顶点在底面的射影为底面的内心、外心、垂心的条件,这可能是快速解答某些问题的前提。
5平面图形的翻折、立体图形的绽开等一类问题
要留意翻折前、绽开前后有关几何元素的“不变性”与“不变量”。
6与球有关的题型
只能应用“老方法”,求出球的半径即可。
7立体几何读题
(1)弄清晰图形是什么几何体,规则的、不规则的、组合体等。
(2)弄清晰几何体结构特征。面面、线面、线线之间有哪些关系(平行、垂直、相等)。
(3)重点留意有哪些面面垂直、线面垂直,线线平行、线面平行等。
8解题程序划分为四个过程
①弄清问题。也就是明白“求证题”的已知是什么?条件是什么?未知是什么?结论是什么?也就是我们常说的审题。
②拟定安排。找出已知与未知的干脆或者间接的联系。在弄清题意的基础上,从中捕获有用的信息,并刚好提取记忆网络中的有关信息,再将两组信息资源作出合乎逻辑的有效组合,从而构思出一个胜利的安排。即是我们常说的思索。
③执行安排。以简明、精确、有序的数学语言和数学符号将解题思路表述出来,同时验证解答的合理性。即我们所说的解答。
④回顾。对所得的结论进行验证,对解题方法进行总结。
高二数学实行针对性措施提升成果
(1)记数学笔记,特殊是对概念
高二数学立体几何大题的八大解题技巧 来自淘豆网m.daumloan.com转载请标明出处.