下载此文档

等差数列教学案例.doc


文档分类:中学教育 | 页数:约13页 举报非法文档有奖
1/13
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/13 下载此文档
文档列表 文档介绍
教学设计
授课名称:
《等差数列及其通项公式》
授课人:
绵竹市第二职业高级中学:陈波
授课时间:2005年11月4日
等差数列及其通项公式
一、:同学们观察一下上面的这四个数列:
0,5,10,15,20,…… ①
48,53,58,63 ②
18,15。5,13,10。5,8, ③
10 072,10 144,10 216, 10 288,10 360 ④
看这些数列有什么共同特点呢?
观察分析并得出答案:
引导学生观察相邻两项间的关系,得到:
对于数列①,从第2项起,每一项与前一项的差都等于 5 ;
对于数列②,从第2项起,每一项与前一项的差都等于 5 ;
对于数列③,从第2项起,每一项与前一项的差都等于 —2。5 ;
对于数列④,从第2项起,每一项与前一项的差都等于 72 ;
由学生归纳和概括出,以上四个数列从第2项起,每一项与前一项的差都等于同一个常数(即:每个都具有相邻两项差为同一个常数的特点)。
通过分析,激发学生学习的探究知识的兴趣,引导揭示数列的共性特点。
总结提高
[等差数列的概念]
,尝试着给等差数列下个定义:
等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
这个常数叫做等差数列的公差,,它们的公差依次是5,5,—,72。
学生认真阅读课本相关概念,找出关键字。
通过学生自己阅读课本,找出关键字,提高学生的阅读水平和思维概括能力,学会抓重点。
提问:如果在与中间插入一个数A,使,A,成等差数列数列,那么A应满足什么条件?
由学生回答:因为a,A,b组成了一个等差数列,那么由定义可以知道:A-a=b-A
所以就有
让学生参与到知识的形成过程中,获得数学学习的成就感。
由三个数a,A,b组成的等差数列可以看成最简单的等差数列,这时,A叫做a与b的等差中项。
不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项.
如数列:1,3,5,7,9,11,13…中5是3和7的等差中项,1和9的等差中项。
9是7和11的等差中项,5和13的等差中项。
看来,
从而可得在一等差数列中,若m+n=p+q

深入探究,得到更一般化的结论
引领学。
[等差数列的通项公式]
对于以上的等差数列,我们能不能用通项公式将它们表示出来呢?这是我们接下来要学习的内容。
⑴、我们是通过研究数列的第n项与序号n之间的关系去写出数列的通项公式的。下面由同学们根据通项公式的定义,写出这四组等差数列的通项公式.
由学生经过分析写出通项公式:
①这个数列的第一项是5,第2项是10(=5+5),第3项是15(=5+5+5),第4项是20(=5+5+5+5),……由此可以猜想得到这个数列的通项公式是
② 这个数列的第一项是48,第2项是53(=48+5),第3项是58(=48+5×2),第4项是63(=48+5×3),由此可以猜想得到这个数列的通项公式是
③ 这个数列的第一项是18,(=18-),第3项是13(=18-2。5×2),(=18—×3),第5项是8(=18—×4),(=18—2。5×5)由此可以猜想得到这个数列的通项公式是
④这个数列的第一项是10072,第2项是10144(=10172+72),第3项是10216(=10072+72×2),第4项是10288(=10072+72×3),第5项是10360(=10072+72×4),由此可以猜想得到这个数列的通项公式是
学会发现规律,并加以总结。
⑵、那么,如果任意给了一个等差数列的首项和公差d,它的通项公式是什么呢?

引导学生根据等差数列的定义进行归纳:

所以


……
引导学生进行理性分析与推导,从而得出公式。
总结提高
思考:那么通项公式到底如何表达呢?
……
进一步的分析。
得出通项公式:由此我们可以猜想得出:以为首项,d为公差的等差数列的通项公式为
也就是说,只要我们知道了等差数列的首项和公差d,那么这个等差数列的通项就可以表示

等差数列教学案例 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数13
  • 收藏数0 收藏
  • 顶次数0
  • 上传人bkeck
  • 文件大小186 KB
  • 时间2022-02-26