----
1 / 27
让学习成为一种习惯!
数列
一、数列的概念
〔 1〕数列定义:按一定次序排列的一列数叫做数列;
数列中的每个数都叫这个数列的项。记作
an,在数列第一个位置的项叫第
1 项〔或首项〕,
n
① an
表示数列, an表示数列中的第
n 项, an=
f n 表示数列的通项公式;
②同一个数列的通项公式的形式不一定唯一。例如,an = ( 1)
n
1,n
2k
1
Z) ;
=
1,n
2k
(k
③不是每个数列都有通项公式。例如,
1, , ,
,,,
〔 3〕数列的函数特征与图象表示:
序号: 1
2
3
4
5
6
项:4567
8
9
上面每一项序号与这一项的对应关系可看成是一个序号集合到另一个数集的映射。
从函数观点看, 数列
实质上是定义域为正整数集
N 〔或它的有限子集〕的函数
f (n) 当自变量 n 从1
开场依次取值时对应的一系列
函数值 f (1), f (2), f (3),,,,
f (n) ,,,.通常用
an来代替 f
n
,其图象是一群孤立点。
例:画出数列
an
2n
1
的图像 .
4〕数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:单调数列〔递增数列、递减数列〕 、常数列和摆动数列。
例:以下的数列,哪些是递增数列、递减数列、常数列、摆动数列?
〔1〕 1, 2,3, 4, 5, 6,,
(2)10, 9, 8, 7, 6, 5,
,
(3) 1, 0, 1, 0, 1, 0,
,
(4)a, a, a, a, a,
,
〔 5〕数列 { an } 的前 n 项和Sn与通项an的关系:an
S1
(n 1)
S
S (n≥ 2)
n
n 1
例:数列 { an} 的前n项和 sn
2n2
3,求数列 { an} 的通项公式
3 / 27
----
1
27 / 27
----
让学习成为一种习惯!
数列
一、数列的概念
〔 1〕数列定义:按一定次序排列的一列数叫做数列;
数列中的每个数都叫这个数列的项。记作
an,在数列第一个位置的项叫第
1 项〔或首项〕,在第二个位
置的叫第
2 项, ,, ,序号为
n 的项叫第 n 项〔也叫通项〕记作
an;
数列的一般形式: a1, a2, a3,,,, an,,,,简记作an
。
例:判断以下各组元素能否构成数列
1〕 a, -3, -1, 1, b, 5, 7, 9;
(2)2021年各省参加高考的考生人数。
〔 2〕通项公式的定义:如果数列
{ an} 的第n项与n之间的关系可以用一个公式表示,那么这个公式就
叫这个数列的通项公式。
例如:①: 1
,2 ,3 ,4, 5
,,
1111
②: 1,,,,,
2345
数列①的通项公式是
an=
n 〔 n
7,n
N 〕,
数列②的通项公式是
an=
1〔 n
N 〕。
说明:
n
① an
表示数列, an表示数列中的第
n 项, an=
f n 表示数列的通项公式;
②同一个数列的通项公式的形式不一定唯一。例如,an = ( 1)
n
1,n
2k
1
Z) ;
=
1,n
2k
(k
③不是每个数列都有通项公式。例如,
1, , ,
,,,
〔 3〕数列的函数特征与图象表示:
序号: 1
2
3
4
5
6
项:4567
8
9
数列知识点总结与题型归纳 来自淘豆网m.daumloan.com转载请标明出处.