下载此文档

基于LSTM深度强化学习的UAV反应式避障方法 杨秀霞.pdf


文档分类:医学/心理学 | 页数:约11页 举报非法文档有奖
1/11
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/11 下载此文档
文档列表 文档介绍
基于LSTM深度强化学习的UAV反应式避障方法_杨秀霞 : .
飞行力学
UAV 在不同环境中迅
速避障。在仿真实验中与多种算法进行对比分析,证明了所提算法具有良好的泛化性和有效性。
关 键 词:无人机;长短时记忆神经网路;深度确定性策略梯度算法;反应式避障;不确定环境
中图分类号:V249
文献标识码:A
UAV deep reinforcement learning reactive obstacle avoidance method
based on LSTM
YANG Xiuxia, GAO Hengjie, LIU Wei, ZHANG Yi
(Naval Aviation University,Yantai 264001,China)
Abstract: Aiming at the problem that traditional obstacle avoidance methods are difficult to
apply to complex and multi-obstacle uncertain environments, a UAV reactive obstacle avoidance
method based on LSTM-DDPG is proposed. Firstly, the DDPG obstacle avoidance method based
on the speed obstacle method is used to give the UAV obstacle avoidance strategy in a dynamic
environment. Secondly, the LSTM neural network is introduced to improve the DDPG obstacle
avoidance method, which solves the problem that the method cannot represent the status
information for different numbers of obstacles.. Finally, the obstacle change strategy is designed
to make the UAV learning in a random training environment, so that the UAV can quickly avoid
obstacles in different environments. In the simulation experiment, this method is compared and
analyzed with a variety of algorithms, which proves that the proposed algorithm has good
generalization and effectiveness.
Key words:UAV;LSTM;DDPG;reactive obstacle avoidance;uncertain environment
挑战,传统的障碍规避方法,如 A*算法[1-2]、人
0 引言

基于LSTM深度强化学习的UAV反应式避障方法 杨秀霞 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数11
  • 收藏数0 收藏
  • 顶次数0
  • 上传人可卿
  • 文件大小940 KB
  • 时间2022-03-19
最近更新