形如(x-m)2=n(n≥0)的方程,其解为x=±m.
.
2、配方法
通过配成完全平方式的方法,得到一元二次方程的根的方法。这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。
(1)转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)
(2)系数化1:将二次项系数化为1
(3)移项:将常数项移到等号右侧
(4)配方:等号左右两边同时加上一次项系数一半的平方
(5)变形:将等号左边的代数式写成完全平方形式
(6)开方:左右同时开平方
(7)求解:整理即可得到原方程的根
初三数学学习方法
1、“方程”的思想
数学是探讨事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。比如等速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关等式:=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。我们在小学就已经接触过简易方程,而初一则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤。假如学会并驾驭了这五个步骤,任何一个一元一次方程都能顺当地解出来。初二、初三我们还将学习解一元二次方程、二元二次方程组、简洁的三角方程;到了中学我们还将学习指数方程、对数方程、线性方程组、、参数方程、极坐标方程等。解这些方程的思维几乎一样,都是通过肯定的方法将它们转化成一元一次方程或一元二次方程的形式,然后用大家熟识的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。物理中的能量守恒,化学中的化学平衡式,现实中的大量实际应用,都须要建立方程,通过解方程来求出结果。因此,同学们肯定要将解一元一次方程和解一元二次方程学好,进而学好其它形式的方程。
所谓的“方程”思想就是对于数学问题,特殊是现实当中遇到的未知量和已知量的错综困难的关系,擅长用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。
2、“数形结合”的思想
大千世界,“数”与“形”无处不在。任何事物,剥去它的质的方面,只剩下形态和大小这两个属性,就交给数学去探讨了。初中数学的两个分支枣-代数和几何,代数是探讨“数”的,几何是探讨“形”的。但是,探讨代数要借助“形”,探讨几何要借助“数”,“数形结合”是一种趋势,越学下去,“数”与“形”越密不行分,到了中学,就出现了特地用代数方法去探讨几何问题的一门课,叫做“解析几何”。在初三,建立平面直角坐标系后,探讨函数的问题就离不开图象了。往往借助图象能使问题明朗化,比较简单找到问题的关键所在,从而解决问题。在今后的数学学习中,要重视“数形结合”的思维训练,任何一道题,只要与“形”沾得上一点边,就应当依据题意画出草图来分析一番,这样做,不但直观,而且全面,整体性强,简单找出切入点,对解题大有好处。尝到甜头的人渐渐会养成一种“数形结合”的好习惯。
3、“对应”的思想
“对应”的思想由来已久,比如我们将一支铅笔、一本书、一栋房子对应一个抽象的数“1”,将两只眼睛、一对耳环、双胞胎对应一个抽象的数“2”;随着学习的深化,我们还将“对应”扩展到对应一种形式,对应一种关系,等等。比如我们在计算或化简中,将对应公式的左边,对应a,y对应b,再利用公式的右边干脆得出原式的结果即。这就是运用“对应”的思想和方法来解题。初二、初三我们还将看到数轴上的
2022年初三数学下册知识点总结 来自淘豆网m.daumloan.com转载请标明出处.