.
数据仓库概述经过多年IT的建设,信息对于企业的日常管理已经日益重要,并逐渐成为重要的信息资产,信息资产的管理已经成为日常管理中一个非常重要的环节。如何管理和利用好企业内部纷繁的数据也越来越成为信息管理的一项重要工作。
在过去相当一段转换关系等,同样,数据的分布情况同样可以使用分析功能来完成。在对现有数据足够了解的基础上(完成了数据的分析),接下来就要制定数据的清洗规则以及转换规则,其中,清洗规则又分为两种情况,一种清洗规则是明确的,另一种清洗规则是模糊的,比如不同系统中存储的地址信息,“南京市定淮门大街9号”和“江苏省南京市下关区定淮门大街9号”实际上是一个地址,但计算机会当成两个地址来处理。概率匹配功能和动态权重策略可以匹配创建高质量、准确的数据,并在整个数据域中一致地识别核心业务信息,如人名、位置、和时间。
数据清洗、转换、加载服务对保障数据的准确性和一致性非常重要。在不同的系统中,对同一业务会使用不同的分类方法,同样,数据的类别和层次结构也会不同。需要通过数据清洗、转换、加载层实现对这些信息格式的转换,匹配成通用的信息格式和分类方法,以便提供整个企业业务层面聚合的业务视图。实际证明一体化平台(一期)的全域数据梳理中,手工统计可以完成这项工作但不够好,不够直观和没有扩展延续能力。数据清洗、转换、加载工作对未来数据的使用非常重要,即使有工具帮助,工作量依然很大。虽然,开始的时候,这项工作看起来费时费力,但从长远来看,它使得基于这些数据的业务流程和统一数据视图实现自动化,并减少了人为干预不准确或不一致数据的努力,从而节省了大量成本。企业层面的单一视图一经建立,其维护必将是一个持续进行的过程。
数据的管理通常需要一个管理组织来对冲突或缺失的数据进行决策,组织会通常需要各个业务部门的人参与,而不仅仅局限于通技处或信息中心的人。企业单一数据视图的维护,很多业务部门都做的不够好,时间一久,很多业务部门就变得厌倦,数据清洗转换的工作没有坚持下去。一旦数据的准确性出现问题,业务系统的全局共享就无法再从中获益。
交换服务体系中的服务总线主要基于流程服务、传输服务、交换服务等实现。通过使用总线,可以支持各种协议以及数据格式的数据交互。通过搭建一个基于标准的、开发的、易于集成的、总线方式的服务总线,通过今后对现有系统的逐步升级改造,系统之间以一种成为“服务”的接口方式统一通过总线方式进行交互,通过对服务的管理,系统之间交互的信息格式的差异、传输协议的差异、采用技术的差异、物理位置的不同等等这些问题都由这个总线来进行屏蔽。进一步通过流程管理,将模块和系统之间的服务按照业务流程的需要进行编排,做到了“随需而变”。
数据存储区包括ODS、数据仓库/数据集市、共享数据库、特征库、模型库等,主要提供各种数据的存储服务。其中,逻辑视图中ODS部分存放了整个企业单位全局级的明细数据,而数据仓库数据集市中存储了不同级别的汇总数据。特征库主要存放各种数据分群特征、业务分类特征等业务信息,模型库存放构建的各种业务模型信息等。
基础服务层主要包括“应用服务器”,“服务总线”,“工作流引擎”,“消息中间件”,“OLAP引擎”,“数据挖掘引擎”,“事件驱动”,“规则引擎”,“协同工作”和“空间地理数据引擎”。
应用层包括各种应用,其中多维分析、即席查询、报表统计、图形展现等
数据仓库dw建设概要 来自淘豆网m.daumloan.com转载请标明出处.