python数据分析
python数据分析(pandas)
几年后发生了。在使用SAS工作超过5年后,我决定走出自己的舒适区。作为一个数据科学家,我寻找其他有用的工具的旅程开始了!幸运的是,没过多久我就决定,Python作为我的
界面显示In[*]代表输入和Out[*]代表输出。
你可以通过按“Shift + Enter”或“ALT + Enter”来执行代码,如果你后面还想插入一行。
在我们深入挖掘如何解决问题之前,让我们退后一步,了解Python的基本知识。当我们知道数据结构和迭代和条件结构是形成任何语言的关键。在Python中,这些包括列表、字符串、元组、字典、for循环,while循环,if-else等等,让我们来看看下面的因素。
2 .在Python上运行一些简单程序
Python的数据结构
以下是Python中使用的一些数据结构。你应该熟悉他们,以便恰当的使用它们。
列表——列表是在Python中最通用的数据结构。列表可以这样简单的定义:就是在方括号中一系列用逗号来分隔的值。列表可能包含不同类型的项,但它们通常都有相同类型的。
Python列表是可变的,列表中的单个元素是可以改变的。
这里是一个快速的例子,定义了一个列表,然后访问它:
字符串——字符串可以简单的使用单引号(")、双引号(”)或三引号(’’’)来定义。字符串封闭三引号(’’’)中可以跨越多行的代码,在文档字符串中是很常用的(记录功能的
Python方式)。作为一个转义字符。请注意,Python中的字符串是不可变的,所以你不能改变字符串的部分。
元组——元组由一系列由逗号分隔的值表示。元组是不可变的,输出的用括号包围,目的是嵌套结构可以被正确处理。此外,尽管元组是不可变的,但它们可以在必要是含有可变数据。
因为元组是不可变的,不可改变的,他们相对列表来说可以处理的更快。因此,如果你的清单是不可能改变的,你应该使用元组,而不是列表。
字典——字典是键:值对一个无序集合,要求键是唯一的(在一个字典里)。一对大括号创建一个空的字典:{ }。
Python的迭代和条件结构
和大多数语言一样,Python也有一个FOR循环,这是最广泛使用的迭代方法。它有一个简单的语法:
这里的“Python的迭代可以是列表、元组或其他先进的数据结构,我们将在后面的章节中探讨。让我们来看看一个简单的例子,确定一个数字的因子。
来看看条件语句,它们是用来基于条件执行代码片段。最常用的结构是if-else,有以下语法:
例如,如果我们想打印出某个数字n是偶数还是奇数:
既然你熟悉了Python的基础,我们来更近一步。如果你像完成以下任务:
乘2矩阵
求二次方程的根
绘制条形图和直方图
建立统计模型
访问网页
如果你想从零开始写代码,它将是一场噩梦,你使用Python不会超过2天!但不要担心这些。值得庆幸的是,有许多预定义的库,我们可以直接导入到我们的代码,使我们的生活很容易。
例如,考虑我们刚才看到的因子的例子。我们可以一步就完成:
当然,为了这样我们需要导入的math库。让我们探索下一个不同的库。
Python库
在开始我们的学习Python之旅之前,让我们先一步,了解一些有用的python库。第一步显然是要学会将它们导入到我们的环境中。在Python中有以下几种方法:
在第一种方式中,我们已经为math库定义了一个别名m。现在我们可以使用数学库的各种功能(例如阶乘, ()) 。
第二方式,你需要导入math的整个命名空间,你可以直接使用factorial(),而不用提到math。
提示:谷歌推荐您使用第一种方式导入库,因为您将知道函数来自何处。
下面是一个库列表,你将在任何科学计算和数据分析中用到:
NumPy代表数值Python。NumPy最强大的功能是n维数组。该库还包含基本的线性代数函数,傅里叶变换,高级的随机数功能,以及集成其他低级语言如Fortran,C和C++的工具。
SciPy代表科学的Python。SciPy是基于NumPy的。它是最有用的库之一,具有各种高层次的科学和工程模块,如离散傅立叶变换,线性代数,优化和稀疏矩阵。
Matplotlib用于绘制各种各样的图表,从直方图到线图,再到热图。你可以在IPython
notebook中使用PyLab(IPython notebook–PyLab = inline)以此使用这些绘图功能的inline。如果你忽略inline选项, PyLab 会将IPytho
python数据分析 来自淘豆网m.daumloan.com转载请标明出处.