下载此文档

基于小波变换和CNN的涡旋压缩机故障诊断 苏莹莹.pdf


文档分类:通信/电子 | 页数:约9页 举报非法文档有奖
1/9
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/9 下载此文档
文档列表 文档介绍
中国测试
China Measurement & Test
ISSN 1674-5124,CN 51-1714/TB

%,与传统多尺度排列熵、信息熵熵距的故障诊断方法相比,该故障识别方法具有更高的准确率。
关键词:故障诊断;振动信号;小波变换;卷积神经网络
中图分类号:+1 文献标志码:B

Fault diagnosis of scroll compressor based on wavelet transform and CNN
SU Yingying,MAO Haixu
( School of Mechanical Engineering, Shenyang University, Shenyang Liaoning, China 110000)

Abstract: In order to solve the problem that traditional single-scale signal analysis is difficult to effectively solve the problem of
multi-scale coupling of fault feature information in the fault diagnosis of scroll compressors, a fault diagnosis method based on
wavelet transform and convolutional neural network(CNN) is proposed. Firstly, the collected vibration signal is analyzed by
Continuous wavelet transform to generate time-frequency diagram. And the generated time-frequency diagram is gridded and
normalized. Then, it has to be inputtd to Alexnet convolutional neural network, and the network parameters are adjusted to obtain

基于小波变换和CNN的涡旋压缩机故障诊断 苏莹莹 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数9
  • 收藏数0 收藏
  • 顶次数0
  • 上传人十二贾氏
  • 文件大小1.17 MB
  • 时间2022-04-25