lace 小波对采集到的滚动轴承振动信号进行相关滤波并进行功率谱变换;然后构造卷积神经网 络(CNN)框架,并引入自注意力机制(SA)和动态选择机制(DS),进而构造 SA-DS-CNN;最后利 用 SA-DS-CNN 提取功率谱特征,依据轴承不同故障状态定位相关特征信息,实现故障特征提取和故 障识别。试验结果表明:提出模型的故障识别精度更高,准确率可达 %。提出模型在不同背景噪 声干扰下的特征学习能力和故障识别准确率优于其他组合模型,具有一定的工程参考价值。 关键词:滚动轴承;故障诊断;卷积神经网络;Laplace 小波;自注意力机制 中图分类号: 文献标识码:A Rolling bearing fault identification based on Laplace wavelet filtering and SA-DS-CNN WEI Ya-hui1, GUO Ji-yuan2, GAO Fan3 1. Dept. of Mechanical and Electronic Engineering, Zhumadian Vocational and Technical College, Zhumadian 463000, China; 2. State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400030, China; 3. Chongqing Wasu Robot Co., Ltd., Chongqing 400714, China Abstract: Deep learning-based rolling bearing fault identification methods were vulnerable to environmental noise, a method based on Laplace wavelet filtering with SA-DS-CNN was proposed. Firstly, in order to improve the parameter selection efficiency of Laplace wa