精品范文模板 可修改删除
免责声明:图文来源于网络搜集,版权归原作者所以
若侵犯了您的合法权益,请作者与本上传人联系,我们将及时更正删除。
撰写人:___________日 期:___________
,只需讨论剩下的180元如何使用的问题。
解:注意到购买3片软件和2盒磁盘花去320元,所以,这里只讨论剩下的180元如何使用,可从购买软件的情形入手分类讨论: 第一类,再买3片软件,不买磁盘,只有1种方法; 第二类,再买2片软件,不买磁盘,只有1种方法;
第三类,再买1片软件,再买1盒磁盘或不买磁盘,有2种方法; 第四类,不买软件,再买2盒磁盘、1盒磁盘或不买磁盘,有3种方法; 于是由分类计数原理可知,共有N=1+1+2+3=7种不同购买方法,应选C。
例2、已知集合M={-1,0,1},N={2,3,4,5},映射 ,当x∈M时, 为奇数,则这样的映射 的个数是( )
分析:由映射定义知,当x∈M时,
当x
精品范文模板 可修改删除
免责声明:图文来源于网络搜集,版权归原作者所以
若侵犯了您的合法权益,请作者与本上传人联系,我们将及时更正删除。
∈M时,这里的x可以是奇数也可以是偶数,但 必须为奇数,因此,对M中x的对应情况逐一分析,分步考察:
第一步,考察x=-1的象,当x=-1时, ,此时 可取N中任一数值,即M中的元素-1与N中的元素有4种对应方法;
第二步,考察x=0的象,当x=0时, 为奇数,故 只有2种取法( =3或 =5),即M中的元素0与N中的元素有2种对应方法;
第三步,考察x=1的象,当x=1时, 为奇数,故 可为奇数也可为偶数, 可取N中任一数值,即M中的元素1与N中的元素有4种对应方法,于是由分步计数原理可知,映射 共有4×2×4=32个。
例3、在中有4个编号为1,2,3,4的小三角形,要在每一个小三角形中涂上红、蓝、黄、白、黑五种颜色中的一种,使有相邻边的小三角形颜色不同,共有多少种不同的涂法?
解:根据题意,有相邻边的小三角形颜色不同,但“对角”的两个小三角形可以是相同颜色,于是考虑以对角的小三角形1、4同色与不同色为标准分为两类,进而在每一类中分步计算。
第一类:1与4同色,则1与4有5种涂法,2有4种涂法,3有4种涂法, 故此时有N1=5×4×4=80种不同涂法。
第二类:1与4不同色,则1有5种涂法,4有4种涂法,2有3种涂法,3有3种涂法,故此时有N2=5×4×3×3=180种不同涂法。 综上可知,不同的涂法共有80+180=260种。
点评:欲不重不漏地分类,需要选定一个适当的分类标准,一般地,根据所给问题的具体情况,或是从某一位置的特定要求入手分类,或是从某一元素的特定要求入手分类,或是从问题中某一事物符合条件的情形入手分类,或是从问题中有关事物的相对关系入手分类等等。
例4、将字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( )
解法一(采用“分步”方法):完成这件事分三个步骤。
第一步:任取一个数字,按规定填入方格,有3种不同填法;
第二步:取与填入数字的格子编号相同的数字,按规定填入方格,仍有3种不同填法;
第三步:将剩下的两个数字按规定填入两个格子,只有1种填法;
于是,由分步计数原理得,共有N=3×3×1=9种不同填法。
解法二:(采用“列举”方法):从编号为1的方格内的填数入手进行分类。
第一类:编号为1的方格内填数字2,共有3种不同填法:
精品范文模板 可修改删除
免责声明:图文来源于网络搜集,版权归原作者所以
若侵犯了您的合法权益,请作者与本上传人联系,我们将及时更正删除。
2
4
1
3
2
1
4
3
2
3
4
1
第二类:编号1的方格内填数字3,也有3种不同填法:
3
1
4
2
3
4
1
2
3
4
2
1
第三类:编号为1的方格内填数字4,仍有3种不同填法:
4
1
2
3
4
3
1
2
4
3
2
1
于是由分类计数原理得共有N=3+3+3=9种不同填法,应选B
解法三(间接法):将上述4个数字填
排列组合知识点与方法归纳 来自淘豆网m.daumloan.com转载请标明出处.