谈排列组合应用题的教学
第 2 页
谈排列组合应用题的教学
导读:排列组合应用题思维抽象,解法独特且灵活多变,搞好排列组合应用题的教学对训练学生的思维,培养学生分析问题、解决问题的能力都有十分重要的意义。加法原理和乘法原理
谈排列组合应用题的教学
第 2 页
谈排列组合应用题的教学
导读:排列组合应用题思维抽象,解法独特且灵活多变,搞好排列组合应用题的教学对训练学生的思维,培养学生分析问题、解决问题的能力都有十分重要的意义。加法原理和乘法原理是推导排列组合种数计算公式的重要依据,也是解排列组合问题的关键。推导排列组合公式要用两个原理,解决排列组
合应用题也要用“两个原理”,因此在排列组合内容的教学中应把“两个原理”的教学贯穿始终。
:排列,组合,应用题
排列组合应用题思维抽象,解法独特且灵活多变,搞好排列组合应用题的教学对训练学生的思维,培养学生分析问题、解决问题的能力都有十分重要的意义。那么,如何搞好这部分内容的教学呢?笔者结合自己多年的教学经验谈几点体会。
一、抓住“两个原理”
“两个原理”的教学。“加法原理”和“乘法原理”是推导排列组合种数计算公式的重要依据,也是解排列组合问题的关键。授课时应结合实际多举些例子,让学生明确哪一类问题用“加法原理”,哪一类问题用“乘法原理”;让学生明确在考虑应用两个原理解决问题时,要注意“完成一件事”的办法是分步进行还是分类完成。如果是分步进行,
第 3 页
定顺序排成的一列元素,两个排列的不同,意味着两个排列的元素不同或元素相同,但元素的排列顺序不同。组合是无顺序约束的一组元素,两个组合的不同,意味着当且仅当两个组合元素的不同。要辨清所解问题是排列还是组合,主要看这个问题与元素的排序有无关系,有关是排列问题,无关是组合问题。
例3:用1分、2分、5分的硬币各一枚,可以组成多少种不同的币值?
三种硬币组成不同币值的方式可分为三类,即分别用一枚两枚三枚组成,且无论用几枚硬币所组成的币值种数与硬币的排序无关,因此是组合问题,共++﹦7(种)
例4:某信号兵用红、黄、蓝三面旗,从上到下插在竖直的旗杆上表示信号,每次可插一面、两面、三面,一共可以表示多少种不同的信号?
解此类问题时要求学生联系实际。挂旗表示信号,与各色旗的上下顺序有关,因此是排列问题。信号又可分为三类,用一面旗、两面旗、三面旗都可独立表示不同信息,因此有++﹦15(种)
三、总结常用方法
讲排列组合应用题时,教师不要急于教给学生解各类问题的方法,可先让学生广开思路,从不同角度分析问题,再把学生的解题方法汇集起来,然后让大家讨论,哪种方法巧妙,哪种方法带有一般性,是常用方法。经归纳总结,解排
第 5 页
列组合应用题有以下几种常用方法。
。就是根据题中的约束条件,直接使用两个原理,从正面求出符合题意的排列(组合)种数。
例5:五人并排照相,甲必须在中间有多少种不同排法?
解:假设有排好了顺序的五个位置,不考虑甲,先在四个人中选一人站在一号位,再从其余的三人中选一人站在二号位,三号位留给甲,四
号位从余下的二人中选,剩下的1人就是五号位了。共有排法﹦24(种)。也可从把除甲外的四人全排,在每一种排法中让甲站在中间有﹦24(种)。 。就是从
谈排列组合应用题的教学 来自淘豆网m.daumloan.com转载请标明出处.