口诀在微积分教学中的应用举例
赵未莲 摘 要:数学具有理论性强、逻辑思维缜密、公式多、计算量大等学科特点,这个学科一般从小学学到大学,学习时间很长,是学生感觉比较头疼的学科。针对学生在微积分学习中的“畏难”情绪,笔者在教学中将微、v是关键;变限积分是函数,遇到之后先求导;变限积分双变量,先求偏导后求导;定积分化重积分,广阔天地有作为;多重积分要计算,累次积分是关键;积分顺序要交换,必先画出积分图。
关于级数内容的口诀:无穷级数判收敛,部分和后求极限;正项级数判别法,比较、比值和根值;幂级数求和有妙招,公式、等比、列方程。
下面我从三个方面来谈口诀在微积分教学中的具体应用。
一、章节未始,口诀先熟
以口诀的形式总结重点章节的内容,方便学生记住该章的内容,从而减少学生的畏难情绪,同时会引起学生探究新知的兴趣。一般在上一章节内容快讲完时,我会将下一章节的口诀发给学生,要求学生先熟读成诵。如当我快要结束极限这一章时我就将导数及导数应用的口诀发给学生,这个口诀会比上述口诀更详细些,其口诀如下:
导数定义是关键,因变增量正亦负,某点导数若存在,函数该点处连续。分段函数要注意,分段点处最关键,左右运算要先行;求导公式必牢记,复合函数逐层导;幂指积商用对数,隐函求导路数多,微分、公式、直接法。导数应用可重要,洛必达法则陷阱多,未定极限类型多,分层处理洛必达。一阶导,判单调,二阶导,求拐点,判凹凸。端点、驻点、非导点,函数值中定最值。 这一口诀体现了导数及导数应用的主要内容和主要方法,“导数定义是关键,因变增量正亦负,某点导数若存在,函数该点处连续”指出了导数定义的重要性;“分段函数分段点,左右运算要先行”指出分段函数在分段点处的可導性判断应特别注意要进行左右导运算,“求导公式必牢记,复合函数逐层导;幂指积商用对数,隐函求导路数多,微分、公式、直接法”概括了几种求导方法;“导数应用很重要,洛必达法则要用好,待定极限多类型,分层处理洛必达”表明了洛必达法则求极限是导数的应用之一;“一阶导数判单调,二阶导数求拐点、判凸凹”这句口诀说明了一阶导数及二阶导数的作用;“端点,驻点,非导点,函数值内求最值”这句口诀说明了求最值的方法。学生掌握这个口诀后,对本章的主要内容会有一个大概了解,会为后续的学习打下坚实的基础。
二、重要定理,口诀助力
在讲导数的应用前必须要讲到中值定理,且这三个定理有相似之处,容易记混。此时,我会使用相应的口诀,便于学生记忆和理解。微分中值定理有三个:罗尔定理,拉格朗日中值定理,柯西中值定理,这三个微分中值定理的条件中相同的部分也有不同的部分。结合三个定理的特点,可用如下口诀:
闭连开导同要求,端值相等为罗尔,切线必是水平线;端值不等是拉氏,此时切线未必平;两个函数比端点,柯西导数来替换;罗尔、拉氏、柯西点,未必同一区间里。
该口诀将微分中值定理的相同点和不同点区分开,并强化了该定理的几何意义,对学生加深中值定理的认识和应用是非常有利的。
三、重要方法,口诀解疑
在微积分中,极限、导数、积分、微分方程等知识占非常重要的地位,很多计算方法、解题方法是学习的重点和难点。以分部积分法求不定积分为例,分部积分公式:u(x)v′(x)dx=u(x)dv(x)
口诀在微积分教学中的应用举例 来自淘豆网m.daumloan.com转载请标明出处.