导数解题技巧
导数题的解题技巧
【命题趋向】导数命题趋势:
导数应用:导数-函数单调性-函数极值-函数最值-导数的实际应用.
【考点透视】
1.了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等);掌法.
[解答过程](Ⅰ)当时,,则在内是增函数,故无极值.
(Ⅱ),令,得.
由(Ⅰ),只需分下面两种情况讨论.
①当时,随x的变化的符号及的变化情况如下表:
x
0
+
0
-
0
+
↗
极大值
↘
极小值
↗
因此,函数在处取得极小值,且.
要使,必有,可得.
由于,故.
②当时,随x的变化,的符号及的变化情况如下表:
+
0
-
0
+
极大值
极小值
因此,函数处取得极小值,且
若,,的极小值不会大于零.
综上,要使函数在内的极小值大于零,参数的取值范围为.
(III)解:由(II)知,函数在区间与内都是增函数。
由题设,函数内是增函数,则a须满足不等式组
或
由(II),参数时时,.要使不等式关于参数恒成立,必有,即.
综上,解得或.
所以的取值范围是.
例11.(2006年山东卷)设函数f(x)=ax-(a+1)ln(x+1),其中a-1,求f(x)的单调区间.
[考查目的]本题考查了函数的导数求法,函数的极值的判定,考查了应用数形结合的数学思想分析问题解决问题的能力
[解答过程]由已知得函数的定义域为,且
(1)当时,函数在上单调递减,
(2)当时,由解得
、随的变化情况如下表
—
0
+
极小值
从上表可知
当时,函数在上单调递减.
当时,函数在上单调递增.
综上所述:当时,函数在上单调递减.
当时,函数在上单调递减,函数在上单调递增.
例12.(2006年北京卷)已知函数在点处取得极大值,其导函数的图象经过点,,:
(Ⅰ)的值;
(Ⅱ)的值.
[考查目的]本小题考查了函数的导数,函数的极值的判定,闭区间上二次函数的最值, 函数与方程的转化等基础知识的综合应用,考查了应用数形结合的数学思想分析问题解决问题的能力
[解答过程]解法一:(Ⅰ)由图像可知,在上,在上,在上,
故在上递增,在上递减,
因此在处取得极大值,所以
(Ⅱ)
由
得
解得
解法二:(Ⅰ)同解法一
(Ⅱ)设
又
所以
由即得
所以
例13.(2006年湖北卷)设是函数的一个极值点.
(Ⅰ)求与的关系式(用表示),并求的单调区间;
(Ⅱ)设,.若存在使得成立,求的取值范围.
[考查目的]本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学知识解决问题的能力.
[解答过程](Ⅰ)f `(x)=-[x2+(a-2)x+b-a ]e3-x,
由f `(3)=0,得 -[32+(a-2)3+b-a ]e3-3=0,即得b=-3-2a,
则 f `(x)=[x2+(a-2)x-3-2a-a ]e3-x
=-[x2+(a-2)x-3-3a ]e3-x=-(x-3)(x+a+1)e3-x.
令f `(x)=0,得x1=3或x2=-a-1,由于x=3是极值点,
所以x+a+1≠0,那么a≠-4.
当a<-4时,x2>3=x1,则
在区间(-∞,3)上,f `(x)<0, f (x)为减函数;
在区间(3,―a―1)上,f `(x)>0,f (x)为增函数;
在区间(―a―1,+∞)上,f `(x)<0,f (x)为减函数.
当a>-4时,x2<3=x1,则
在区间(-∞,―a―1)上,f `(x)<0, f (x)为减函数;
在区间(―a―1,3)上,f `(x)>0,f (x)为增函数;
在区间(3,+∞)上,f `(x)<0,f (x)为减函数.
(Ⅱ)由(Ⅰ)知,当a>0时,f (x)在区间(0,3)上的单调递增,在区间(3,4)上单调递减,那么f (x)在区间[0,4]上的值域是[min(f (0),f (4) ),f (3)],
而f (0)=-(2a+3)e3<0,f (4)=(2a+13)e-1>0,f (3)=a+6,
那么f (x)在区间[0,4]上的值域是[-(2a+3)e3,a+6].
又在区间[0,4]上是增函数,
且它在区间[0,4]上的值域是[a2+,(a2+)e4],
由于 所以只须仅须且,(0,).
例14 (2004年天津卷)已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.
(1)讨论f(1)和
导数解题技巧 来自淘豆网m.daumloan.com转载请标明出处.