二元一次方程组解应用题
列方程解应用题的基本关系量:
行程问题:速度X时间=路程顺水速度=静水速度一水流速度逆水速度=静水速度一水流速度
工程问题:工作效率x工作时间=工作量
浓度问题:溶液x浓度=溶质
银行利率问题:免税%的盐水与85%的盐水,这两种盐水各需多少?
解:设含盐10%的盐水有x千克,含盐85%的盐水有y千克。 题中的两个相等关系:
1、含盐10%的盐水中盐的重量+^盐85%的盐水中盐的重量=
可列方程为:10%x+ =
2、含盐10%的盐水重量+含盐85%的盐水重量=
LOM
盐水含
於重量
盐水含
船重量
4疆的船 水含鼾 柏重是
可列方程为:x+y=
(金融分配问题)?解:
骞千克
售4 £ 元犍果
克凰 千3梃 年告元
克6黑 千工糖 每售元
健果销 售总价
的糖果为x千克,
题中的两个相等关系:
1、+=
可列方程为:
2、+=
可列方程为:
米,宽是y厘米
(几何分配问题)如图:用8块相同的长方形拼成一个宽为48厘米的大长方形,每块小长方形的长和宽分别是多少?解:设小长方形的长是x厘
题中的两个相等关系:
1、小长方形的长+=大长方形的宽
可列方程为:
2、小长方形的长=
可列方程为:
(材料分配问题)一张桌子由桌面和四条脚组成,1立方米的木材可制成桌面50张或制作桌脚300条,现有5立方米的木材,问应如何分配木材,
蠡
1立方 米木材
应五
米木材
可以使桌面和桌脚配套?
解:设有
题中的两个相等关系:1、制作桌面的木材+=
可列方程为:
2、所有桌面的总数:所有桌脚的总数 =
可列方程为:
(和差倍问题)一个两位数,十位上的数字比个位上的数字大 5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两
第一次
第二次
甲苣车 辆嵬
3
2
区货车 辆数
4
3
m s 、一
3B
26
第一次
第二次
甲货主运 货重量
乙货车运
赁重量
(分配调运)
辆甲种货车和6辆乙种货车,一次刚好运完这批货物,问这批货物有多少吨?
位数的一半还少9,求这个两位数?
解:设个位数字为x,十位数字为y。 题中的两个相等关系:
1、个位数子=-5
可列方程为:
数手
十位 数字
两位数
袤示力
2、新两位数=
愕功 位数
可列方程为:
斯两
位数
一批货物要运往某地,货主准备租用汽运公司的甲、乙两种货车,已知过去租用这两种汽车运货的情况如左表所示,现租用该公司
解:设
题中的两个相等关系:
1、第一次:甲货车运的货物重量+=36
可列方程为:
2、第二次:甲货车运的货物重量+=26
可列方程为:
再探实际问题与二元一次方程组应用题检测
♦知能点分类训练
知能点1
1、班上有男女同学32人,女生人数的一半比男生总数少10人,若设男生人数为x人,女生人数为y人,则可列方程组为
2、甲乙两数的和为10,其差为2,若设甲数为x,乙数为y,则可列方程组为
X 1, X ,1
3、已知方程y=kx+b的两组解是贝U k=b=
y 2; y 0.——
4某工厂现在年产值是150万元,如果每增加1000元的投资一年可增加2500元的产值,设新增加的投资额为 x万元,总产值为y万元,那么x,y
所满足的方程为
5、学校购买35张电影票共用250元,其中甲种票每张8元,乙种票每张6元,设甲种票x张,乙种票y张,则列方程组 ,方程
组的解是
6、一根木棒长8米,分成两段,其中一段比另一段长 1米,求这两段的长时,设其中一段为 x米,另一段为V,那么列的二元一次方程组为
7、一个矩形周长为20cm,且长比宽大2cm,则矩形的长为 cm,宽为 cm
8、某校运动员分组训练,若每组 7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y组,则列方程组为()
9、一只轮船顺水速度为40千米/时,逆水速度为26千米/时,则船在静水的速度是 ,水流速度是.
10、一辆汽车从A地出发,向东行驶,途中要过一座桥,使用相同的时间,如果车速是每小时60千米,就能越过桥2千米;如果车速是每小时50千米, 就差3千米才能到桥,则A地与桥相距 千米,用了 小时.(考虑问题时,桥视为一点)
11、一块矩形草坪的长比宽的
二元一次方程组应用题集锦 来自淘豆网m.daumloan.com转载请标明出处.