1
高三数学重点知识点
(总结)是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以关心我们有查找学习和工作中的规律,因此我们要做好归纳,写好总结。那么总结有什么格式呢?下面是我给大家带来的(高三数学)重 ⑼直线、平面、简洁几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量
⑽排列、组合和概率:排列、组合应用题、二项式定理及其应用
3
⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布
⑿导数:导数的概念、求导、导数的应用
⒀复数:复数的概念与运算
高三数学学问点归纳总结
第一部分集合
(1)含n个元素的集合的子集数为2^n,真子集数为2^n—1;非空真子集的数为2^n—2;
(2)留意:争论的时候不要遗忘了的状况。
其次部分函数与导数
1、映射:留意①第一个集合中的元素必需有象;②一对一,或多对一。
2、函数值域的求法:①分析法;②配(方法);③判别式法;④利用函数单调性;⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、肯定值的意义等);⑧利用函数有界性(、、等);⑨导数法
3、复合函数的有关问题
(1)复合函数定义域求法:
①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出
②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。
(2)复合函数单调性的判定:
4
①首先将原函数分解为基本函数:内函数与外函数;
②分别讨论内、外函数在各自定义域内的单调性;
③依据“同性则增,异性则减”来推断原函数在其定义域内的单调性。
留意:外函数的定义域是内函数的值域。
4、分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。
5、函数的奇偶性
⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;
⑵是奇函数;
⑶是偶函数;
⑷奇函数在原点有定义,则;
⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;
(6)若所给函数的解析式较为简单,应先等价变形,再推断其奇偶性;
1、对于函数f(x),假如对于定义域内任意一个x,都有f(—x)=—f(x),那么f(x)为奇函数;
2、对于函数f(x),假如对于定义域内任意一个x,都有f(—x)=f(x),那么f(x)为偶函数;
3、一般地,对于函数y=f(x),定义域内每一个自变量x,都有f(a+x)=2b—f(a—x),则y=f(x)的图象关于点(a,b)成中心对称;
5
4、一般地,对于函数y=f(x),定义域内每一个自变量x都有f(a+x)=f(a—x),则它的图象关于x=a成轴对称。
5、函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;
6、由函数奇偶性定义可知
高三数学重点知识点 来自淘豆网m.daumloan.com转载请标明出处.