2022年高考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上.
21.(12分)设函数.
(1)求不等式的解集;
(2)若的最小值为,且,求的最小值.
22.(10分)在三棱锥中,是边长为的正三角形,平面平面,,M、N分别为、的中点.
(1)证明:;
(2)求三棱锥的体积.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.C
【解析】
本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.
【详解】
由题意得,,则
.故选C.
【点睛】
不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.
2.D
【解析】
试题分析:如图所示,截去部分是正方体的一个角,其体积是正方体体积的,剩余部分体积是正方体体积的,所以截去部分体积与剩余部分体积的比值为,故选D.
考点:本题主要考查三视图及几何体体积的计算.
3.A
【解析】
阳数:,阴数:,然后分析阴数和阳数差的绝对值为5的情况数,最后计算相应概率.
【详解】
因为阳数:,阴数:,所以从阴数和阳数中各取一数差的绝对值有:个,满足差的绝对值为5的有:共个,则.
故选:A.
【点睛】
本题考查实际背景下古典概型的计算,:.
4.C
【解析】
先求集合A,再用列举法表示出集合B,再根据交集的定义求解即可.
【详解】
解:∵集合A={y|y=2x﹣1,x∈R}={y|y>﹣1},
B={x|﹣2≤x≤3,x∈Z}={﹣2,﹣1,0,1,2,3},
∴A∩B={0,1,2,3},
故选:C.
【点睛】
本题主要考查集合的交集运算,属于基础题.
5.D
【解析】
过点作,可得出点为的中点,由可求得的值,可计算出的值,进而可得出,结合可知点为的中点,可得出,利用勾股定理求得(为双曲线的右焦点),再利用双曲线的定义可求得该双曲线的离心率的值.
【详解】
如下图所示,过点作,设该双曲线的右焦点为,连接.
,.
, ,
,为的中点,,,,
,
由双曲线的定义得,即,
因此,该双曲线的离心率为.
故选:D.
【点睛】
本题考查双曲线离心率的求解,解题时要充分分析图形的形状,考查推理能力与计算能力,属于中等题.
6.C
【解析】
根据三视图可知,该几何体是由两个圆锥和一个圆柱构成,由此计算出陀螺的表面积.
【详解】
最上面圆锥的母线长为,底面周长为,侧面积为,下面圆锥的母线长为,底面周长为,侧面积为,没被挡住的部分面积为,,故选C.
【点睛】
本小题主要考查中国古代数学文化,考查三视图还原为原图,考查几何体表面积的计算,属于基础题.
7.A
【解析】
作于,于,分析可得,,再根据正弦的大小关系判断分析得,再根据线面角的最小性判定即可.
【详解】
作于,于.
因为平面平面,,
.
又直线与平面所成角为,因为,
,当且仅当重合时取等号.
又直线与平面所成角为,且为直线与平面内的直线所成角,故,当且仅当平面时取等号.
故.
故选:A
【点睛】
本题主要考查了线面角与线线角的大小判断,需要根据题意确定角度的正弦的关系,.
8.A
【解析】
联立直线方程与椭圆方程,解得和的坐标,然后利用向量垂直的坐标表示可得,由离心率定义可得结果.
【详解】
由,得,所以,.
由题意知,所以,.
因为,所以,所以.
所以,所以,
故选:A.
【点睛】
本题考查了直线与椭圆的交点,考查了向量垂直的坐标表示,考查了椭圆的离心率公式,属于基础题.
9.D
【解析】
取,可排除AB;由蛛网图可得数列的单调情况,进而得到要使,只需,由此可得到答案.
【详解】
取,,数列恒单调递增,且不存在最大值,故排除AB选项;
由蛛网图可知,存在两个不动点,且,,
因为当时,数列单调递增,则;
当时,数列单调递减,则;
所以要使,只需要,故,化简得且.
故选:D.
【点睛】
本题考查递推数列的综合运用,考查逻辑推理能力,属于难题.
10.B
【解析】
分析:利用的恒等式,将分子、分母同时乘以 ,化简整理得
详解: ,故选B
点睛:复数问题是高考数学中的常考问题,属于得分题,主要考查的方面有:复数
贵州省六盘水市钟山区六盘水七中2022年高考数学必刷试卷含解析 来自淘豆网m.daumloan.com转载请标明出处.