详解港珠澳大桥沉管隧道新技术 
工程概况与建设条件港珠澳大桥跨越珠江口伶仃洋海域,连接香港、珠海和澳门,是一国两制三地的海上通道。项目东起香港大屿山石湾,西至珠海拱北和澳门明珠,,包括3项工程内容:1)海中桥隧6km,业主招标方案的标准管节采用了长217m的节段式钢筋混凝土矩形管节。可见,跨海沉管隧道的管节长度有进一步增长的趋势。
管节型式
沉管管节的结构型式主要有钢壳结构和钢筋混凝土结构2种型式,也有钢壳与钢筋混凝土的复合结构型式。凭借混凝土结构防水及控裂技术的进步、柔性接头的出现和横断面利用的优势,矩形箱式钢筋混凝土结构成为当今沉管隧道的主流结构型式。根据港珠澳大桥建设标准及规模要求,单向
,加上隧道深埋回淤上覆荷载偏大,一般的矩形箱式钢筋混凝土结构已不能适应,因此采用了折拱式横断面予以解决,见下图
整体式管节采用管节接头把各管节通过沉放安装连接为沉管段,每管节纵向分为若干施工段,各施工段通过纵向钢筋连接在一起,各施工段之间为施工缝连接,加上可使用外包防水措施,因此管节本身具有良好的水密性;管节接头通过水力压接的GINA橡胶止水带作为第1道密封,OMEGA橡胶止水带作为第2道密封,加上设置接头受力结构件,管节接头具有良好的水密性。节段式管节本身纵向亦分为若干节段,节段之间纵向钢筋断开,各节段通过临时预应力拉索连接在一起(在隧道完工后临时预应力拉索被剪断),节段之间形成变形缝作用的节段接头,这种结构形式改善了管节受力条件,但变形缝(节段接头)增多,这便将结构的受力矛盾转嫁为水密性矛盾。随着隧道总长度的增加和工期的要求,管节长度也需要相应增加,而整体式管节的长度基本发展到了极限,难以满足工期要求,同时又由于混凝土温度应力和收缩徐变等因素的影响,长管节需以节段式取代整体式。,岛隧设计施工总承包商为提高长管节节段接头的水密性,提出将浮运沉放过程中的纵向临时预应力保留为永久预应力。
隧道纵向分析传统上,整体式管节和节段式管节也分别被称为“刚性管节”和“柔性管节”。节段式管节在沉放完成后剪断纵向临时预应力,在计算分析中一般不考虑其纵向刚度,以节段接头的变形适应地基的不均匀沉降,从而减小结构内力。港珠澳大桥岛隧设计施工总承包提出的保留纵向预应力的目的,是利用节段接头接触面摩擦力提高节段接头抗剪能力,通过增加节段接头抗弯刚度以减小可能的张开量,在增强结构的同时又提高了水密性。国外曾有个别工程保留浮运沉放过程中的纵向临时预应力不剪断,其目的主要是为了缩短工期,在结构力学分析上并无重要突破,也难以证明结构“增强”后对其受力是否有利。
其实,传统的节段式管节在纵向轴力作用下也会存在一定刚度,因为水力压接使管节接头形成水密性能的GINA止水带保持必要的压缩量,其反作用于管节形成了纵向轴力。这个刚度与纵向轴力大小密切相关,见图5,保留纵向预应力,通过向管节“输入”一定的轴力,可进一步量化调节节段接头的刚度,这与盾构隧道横向接头抗弯刚度力学原理相同。国外在节段式沉管隧道计算中一般偏于“保守”的视节段接头为可自由转动的铰,不考虑其抗弯刚度,虽然在分析理论上没有继续往前多走一步,但在实际工程中保留纵向预应力的可靠性是值得关注的。
判断预应力是否需要保留且进一步量化,应进行隧道结构的纵向受力分析,根据计算结果分析结构刚度增加所带来的管节与接头(包括管节接头与节段接头)的内力(弯矩和剪力等)和抗力(截面压力和摩擦力等)变化情况,以及接头(包括管节接头与节段接头)变形和止水带水密性安全系数的变化情况。对于节段接头,若抗力增加快于内力增加,保留或增加预应力是有利的,但还需要考察管节接头的内力、张开量和GINA止水带水密性的变化情况,从整体上进行协调平衡,不能只着眼于对局部是否有利。因此,保留纵向永久预应力的节段式管节的最大意义是可以通过预应力调节管节的刚度,以量化的刚度和变形指标解决地基沉降、管节受力和水密性之间的矛盾。需要注意的是,这也带来了永久预应力应用于水下隧道所需要面对的密封性和耐久性问题。
可见,大型沉管隧道的管节型式,从水密性良好但存在受力矛盾的整体管节,发展到将受力矛盾转化为水密性矛盾的节段式管节,未来可能会向寻求平衡受力与水密性矛盾的保留合适预应力管节的方向发展。
混凝土结构耐久性设计以往修建的沉管隧道,大部分处于江河下游,耐久性问题并不突出。从20世纪90年代开始,沉管隧道工程从江河环境逐渐向江河入海口、海湾环境甚至跨海峡环境发展,暴露在海洋环境中的混凝土结构耐久性面临进一步挑战。对于在海洋环境中采用钢筋混凝土结构的沉管隧道(特别是没有外包防水的节段式混凝土管节),混凝土结构的耐久性设计和控裂技术是实现混凝
详解港珠澳大桥沉管隧道新技术 来自淘豆网m.daumloan.com转载请标明出处.