初二数学知识点北师大版
数据的分析
1、平均数
①一般地,对于n个数x1x2...xn,我们把(x1+x2+???+xn)叫做这n个数的算数平均数,简称平均数记为。
②在实际问题中,一组数据
初二数学知识点北师大版
数据的分析
1、平均数
①一般地,对于n个数x1x2...xn,我们把(x1+x2+???+xn)叫做这n个数的算数平均数,简称平均数记为。
②在实际问题中,一组数据里的各个数据的“重要程度”未必一样,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数。
2、中位数与众数
①中位数:一般地,n个数据按大小挨次排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
②一组数据中消失次数最多的那个数据叫做这组数据的众数。
③平均数、中位数和众数都是描述数据集中趋势的统计量。
④计算平均数时,全部数据都参与运算,它能充分地利用数据所供应的信息,因此在现实生活中较为常用,但他简单受极端值影响。
⑤中位数的优点是计算简洁,受极端值影响较小,但不能充分利用全部数据的信息。
⑥各个数据重复次数大致相等时,众数往往没有特殊意义。
3、从统计图分析数据的集中趋势
4、数据的离散程度
①实际生活中,除了关怀数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离状况。一组数据中数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量。
②数学上,数据的离散程度还可以用方差或标准差刻画。
③方差是各个数据与平均数差的平方的平均数。
④其中是x1,x2.....xn平均数,s2是方差,而标准差就是方差的算术平方根。
⑤一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。
((八年级)数学)学问点
分组分解法
我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
假如我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式.
原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
做到这一步不叫把多项式分解因式,(m+n),因此还能连续分解,所以
原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
=(m+n)×(a+b).
初二数学知识点北师大版 来自淘豆网m.daumloan.com转载请标明出处.