河图洛书九宫算术
九宫(又称洛书)
九宫图都知道吧,就是把1~9九个数字填到3×3,使其每一横坚斜之和都相等,如下:
4 9 2
3 5 7
8 1 6
之后已经延伸成一种数字艺术,可以无限延伸(因为 九宫格为数独的“前身”,最早起源于中国。数千年前,我们的祖先就发明了洛书,其特点较之现在的数独更为复杂,要求纵向、横向、斜向上的三个数字之和等于15,而非简单的九个数字不能重复。儒家典籍《易经》中的“九宫图”也源于此,故称“洛书九宫图”。而“九宫”之名也因《易经》在中华文化发展史上的重要地位而保存、沿用至今。
简单一点,3×3方格中,添上1至9,,包含太极,两仪,易经等内容
数独的历史:
数独前身为“九宫格”,最早起源于中国。数千年前,我们的祖先就发明了洛书,其特点较之现在的数独更为复杂,要求纵向、横向、斜向上的三个数字之和等于15,而非简单的九个数字不能重复。儒家典籍《易经》中的“九宫图”也源于此,故称“洛书九宫图”。而“九宫
”之名也因《易经》在中华文化发展史上的重要地位而保存、沿用至今。
1783年,瑞士数学家莱昂哈德·欧拉发明了一种当时称作“拉丁方块”(Latin Square)的游戏,这个游戏是一个n×n的数字方阵,每一行和每一列都是由不重复的n个数字或者字母组成的。
19世纪70年代,美国的一家数学逻辑游戏杂志《戴尔铅笔字谜和词语游戏》(Dell Puzzle Mαgαzines)开始刊登现在称为“数独”的这种游戏,当时人们称之为“数字拼图”(Number Place),在这个时候,9×9的81格数字游戏才开始成型。
1984年4月,在日本游戏杂志《字谜通讯Nikoil》(《パズル通信ニコリ》)上出现了“数独”游戏,提出了“独立的数字”的概念,意思就是“这个数字只能出现一次”或者“这个数字必须是惟一的”,并将这个游戏命名为“数独”(sudoku)。
一位前任香港高等法院的新西兰籍法官高乐德(Wayne Gould)在1997年3月到日本东京旅游时,无意中发现了。他首先在英国的《泰晤士报》上发表,不久其他报纸也发表,很快便风靡全英国,之后他用了6年时间编写了电脑程式,并将它放在网站上,使这个游戏很快在全世界流行。从此,这个游戏开始风靡全球。后来更因数独的流行衍生了许多类似的数学智力拼图游戏,例如:数和、杀手数独。
标准数独的规则为:数独每行、每列及每宫填入数字1-9且不能重复
数独的基本元素:
单元格:数独中最小的单元,标准数独中共有81个;
行:横向9个单元格的集合;
列:纵向9个单元格的集合;
宫:粗黑线划分的区域,标准数独中为3×3的9个单元格的集合;
已知数:数独初始盘面给出的数字;
候选数:每个空单元格中可以填入的数字。
数独终盘的排列组合:
数独中的数字排列千变万化,那么究竟有多少种终盘的数字组合呢?
6,670,903,752,021,072,936,960(×10的21次方)种组合,2005年由Bertram Felgenhauer和Frazer Jarvis计算出该数字,如果将重复(如数字交换、对称等)不计算,那么有5,472,730,538个组合。数独终盘的组合数量都如此惊人,那么数独题目数量就更加不计其数了,因为每个数独终盘都可以用挖数的方法出很多个不同的数独题目。
基本解法举例 数独解法全是由规则衍生出来的,基本解法分为两类思路,一类为排除法,一类为唯一法。更复杂的解法,最终也会归结到这两大类中。 下边以图示简单介绍几种解法,只要你花几分钟看一遍,马上就可以开始做数独了。
]基础摒除法
基础摒除法就是利用1 ~ 9 的数字在每一行、每一列、每一宫都只能出现一次的规则进行解题的方法。基础摒除法可以分为行摒除、列摒除、九宫格摒除。
实际寻找解的过程为:
寻找九宫格摒除解:找到了某数在某一个九宫格可填入的位置只余一个的情形;意即找到了 该数在该九宫格中的填入位置。
寻找列摒除解:找到了某数在某列可填入的位置只余一个的情形;意即找到了该数在该列中的填入位置。
寻找行摒除解:找到了某数在某行可填入的位置只余一个的情形;意即找到了该数在该行中的填入位置。
基础摒除法的提升方法是区块摒除法,是直观法中使用频率最高的方法之一.
唯一解法
当某行已填数字的宫格达到8个,那么该行剩余宫格能填的数字就只剩下那个还没出现过的数字了。成为行唯一解.
当某九宫格已填数字的宫格达到8个,那么该九宫格剩余宫格能填的数字就只剩下那个还没出现过的数字了。成为九宫格唯一解.
[
河图洛书九宫算术 来自淘豆网m.daumloan.com转载请标明出处.