高二数学上学期知识点总结
1、四种命题:
⑴原命题:若p则q;⑵逆命题:若q则p;⑶否命题:若 p则 q;⑷逆否命题:若 q则 p
注:1、原命题与逆否命题等价;逆命题与否命题等价。推断命题真假时留意转
高二数学上学期知识点总结
1、四种命题:
⑴原命题:若p则q;⑵逆命题:若q则p;⑶否命题:若 p则 q;⑷逆否命题:若 q则 p
注:1、原命题与逆否命题等价;逆命题与否命题等价。推断命题真假时留意转化。
2、留意命题的否认与否命题的区分:命题 否认形式是 ;否命题是 .命题“ 或 ”的否认是“ 且 ”;“ 且 ”的否认是“ 或 ”.
3、规律联结词:
⑴且(and) :命题形式 p q; p q p q p q p
⑵或(or):命题形式 p q; 真 真 真 真 假
⑶非(not):命题形式 p . 真 假 假 真 假
假 真 假 真 真
假 假 假 假 真
“或命题”的真假特点是“一真即真,要假全假”;
“且命题”的真假特点是“一假即假,要真全真”;
“非命题”的真假特点是“一真一假”
4、充要条件
由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。
5、全称命题与特称命题:
(短语)“全部”在陈述中表示所述事物的全体,规律中通常叫做全称量词,并用符号 表示。含有全体量词的命题,叫做全称命题。
短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或局部,规律中通常叫做存在量词,并用符号 表示,含有存在量词的命题,叫做存在性命题。
全称命题p: ; 全称命题p的否认 p: 。
特称命题p: ; 特称命题p的否认 p: ;
高二数学上学期学问点总结2
肯定义
集合是高中数学中最原始的不定义的概念,只给出描述性的说明。某些确定的且不同的对象集在一起就成为集合。组成集合的对象叫做元素。
二集合的抽象表示形式
用大写字母A,B,C??表示集合;用小写字母a,b,c??表示元素。
三元素与集合的关系
有属于,不属于关系两种。元素a属于集合A,记作aA?;元素a不属于集合A,记作aA?。
四几种集合的命名
有限集:含有有限个元素的集合;无限集:含有无限个元素的集合;空集:不包含任何元素的集合叫做空集,用?表示;自然数集:N;正整数集:N_或N+;整数集:Z;有理数集:Q;实数集:R。
五集合的表示(方法)
高二数学上学期知识点总结 来自淘豆网m.daumloan.com转载请标明出处.