外文翻译
2
Materials and Structures
© RILEM 2010
-010-9700-y
Original Article
Impact of crack wieel and the concrete.
The deterioration of reinforced concrete is characterized by a general or localized loss of section on the reinforcing bars and the formation of expansive corrosion products. This deterioration can affect structures in a number of ways; the production of expansive products creates tensile stresses within the concrete, which can result in cracking and spalling of the concrete cover. This cracking can lead to accelerated ingress of the aggressive agents causing further corrosion. It can also result in a loss of strength and stiffness of the concrete cover. The corrosion products can also affect the bond strength between the concrete and the reinforcing steel. Finally the corrosion reduces the cross section of the reinforcing steel, which can affect the ductility of the steel and the load bearing capacity, which can ultimately impact upon the serviceability of the structure and the structural capacity [12, 25].
Previous research has investigated the impact of corrosion on bond [2–5, 7, 12, 20, 23–25, 27, 29], with a number of models being proposed [4, 6, 9, 10, 18, 19, 24, 29]. The majority of this research has focused on the relationship between the level of corrosion (mass loss of steel) or the current density degree (corrosion current applied in accelerated testing) and crack width, or on the relationship between bond strength and level of corrosion. Other research has investigated the mechanical behaviour of corroded steel [
外文翻译
3
1, 11] and the friction characteristics [13]. However, little research has focused on the relationship between crack width and bond [23, 26, 28], a parameter that can be measured with relative ease on actual structures.
The corrosion of the reinforcing steel results in the formation of iron oxides which occupy a larger volume than that of the parent metal. This expansion creates
土木工程外文文献 来自淘豆网m.daumloan.com转载请标明出处.