鸡兔同笼问题
教学目标:
“砍足法”和“假设法”.
,需要把多个对象进行恰当组合以转化成两个对象.
知识精讲
知识点说明:
一、鸡兔同笼
这个问题,是我国古代著鸡兔同笼问题
教学目标:
“砍足法”和“假设法”.
,需要把多个对象进行恰当组合以转化成两个对象.
知识精讲
知识点说明:
一、鸡兔同笼
这个问题,是我国古代著名趣题之一.大约在年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有个头;从下面数,有只脚.求笼中各有几只鸡和兔?
你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?
二、解鸡兔同笼的基本步骤
解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多.因此,脚的总只数与总头数的差,就是兔子的只数,即 (只).显然,鸡的只数就是 (只)了.
这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,“鸡兔同笼”问题的经典思路“假设法”.
假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到.
解鸡兔同笼问题的基本关系式是:
如果假设全是兔,那么则有:
鸡数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)
兔数=鸡兔总数-鸡数
如果假设全是鸡,那么就有:
兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数)
鸡数=鸡兔总数-兔数
当头数一样时,脚的关系:兔子是鸡的2倍
当脚数一样时,头的关系:鸡是兔子的2倍
在学习的过程中,注重假设法的运
鸡兔同笼问题 来自淘豆网m.daumloan.com转载请标明出处.