下载此文档

优化CNN超参数的非侵入式电力负荷识别算法 赵安军.pdf


文档分类:行业资料 | 页数:约15页 举报非法文档有奖
1/15
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/15 下载此文档
文档列表 文档介绍
: .
激光与光电子 VI 轨迹像素化图像作为 CNN 输入;其次,分析 CNN
超参数对模型性能影响,并使用 PSO 算法寻求最优解以提升模型识别效果;最后,
基于 PLAID、WHITED 公开数据集对 PSO-CNN 模型进行对比验证。实验结果表明,
该模型的识别准确率、F-measures 平均值皆优于其他模型,有效降低了设备之间的
混淆,具有良好的识别能力与泛化能力。
关键词 非侵入式电力负荷识别;深度学习;卷积神经网络;粒子群优化算法
中图分类号 TM714 文献标志码 A
Non-intrusive Electric Load Identification Algorithm for Optimizing
CNN Hyper-parameters
Zhao Anjun1, Zhao Xiao1, Jing Jing2*, Xi Jiangtao1, Cui Pufang1
1School of Information and Control Engineering, Xi 'an University of Architecture and
Technology, Xi’an Shanxi 710055, China;
2Northwest China Architecture Design and Research Institute, Xi’an Shanxi 710018,
China;
Abstract Aiming at the problems of low recognition rate and hyper-parameters setting of
deep learning model in electric load recognition, a non-intrusive electric load recognition
model(PSO-CNN) combining particle swarm optimization algorithm(PSO) and convolutional
neural network (CNN) was proposed. Firstly, the pixelated image of VI trajectory of each
appliance is used as the CNN input feature. Secondly, the influence of CNN hyper-parameter
on model performance was analyzed, and PSO algorithm is used to find the optimal solution
to improve model recognition effect. Finally, the PLAID and WHITED public data sets were
used to compare and verify the PSO-CNN model. The experimental results show that the
recognition accuracy and average F-measures of this model are better than other models. The

优化CNN超参数的非侵入式电力负荷识别算法 赵安军 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数15
  • 收藏数0 收藏
  • 顶次数0
  • 上传人学习好资料
  • 文件大小1.48 MB
  • 时间2022-07-22
最近更新