下载此文档

山西省太原市小店区太原四十八中2021-2022学年高三第二次诊断性检测数学试卷含解析.doc


文档分类:中学教育 | 页数:约20页 举报非法文档有奖
1/20
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/20 下载此文档
文档列表 文档介绍
2021-2022高考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答小题给出的四个选项中,只有一项是符合题目要求的。
1.D
【解析】
做出函数的图象,问题转化为函数的图象在有7个交点,而函数在上有3个交点,则在上有4个不同的交点,数形结合即可求解.
【详解】
作出函数的图象如图所示,由图可知

方程在上有3个不同的实数根,
则在上有4个不同的实数根,
当直线经过时,;
当直线经过时,,
可知当时,直线与的图象在上有4个交点,
即方程,在上有4个不同的实数根.
故选:D.
【点睛】
本题考查方程根的个数求参数,利用函数零点和方程之间的关系转化为两个函数的交点是解题的关键,运用数形结合是解决函数零点问题的基本思想,属于中档题.
2.C
【解析】
试题分析:将参数a与变量x分离,将不等式恒成立问题转化为求函数最值问题,即可得到结论.
解:不等式x2+ax+1≥0对一切x∈(0,]成立,等价于a≥-x-对于一切成立,
∵y=-x-在区间上是增函数

∴a≥-
∴a的最小值为-故答案为C.
考点:不等式的应用
点评:本题综合考查了不等式的应用、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题
3.B
【解析】
作出约束条件的可行域,在可行域内求的最小值即为的最小值,作,平移直线即可求解.
【详解】
作出实数满足不等式组的可行域,如图(阴影部分)
令,则,
作出,平移直线,当直线经过点时,截距最小,
故,
即的最小值为.
故选:B
【点睛】
本题考查了简单的线性规划问题,解题的关键是作出可行域、理解目标函数的意义,属于基础题.
4.A
【解析】
将圆的方程化简成标准方程,再根据垂径定理求解即可.
【详解】
圆的标准方程,圆心坐标为,半径为,因为直线与圆相交所得弦长为,所以直线过圆心,得,即.
故选:A
【点睛】
本题考查了根据垂径定理求解直线中参数的方法,属于基础题.
5.B
【解析】
根据二项式系数的性质,可求得,再通过赋值求得以及结果即可.
【详解】
因为展开式中第三项的二项式系数与第四项的二项式系数相等,
故可得,
令,故可得,
又因为,
令,则,
解得
令,则.
故选:B.
【点睛】
本题考查二项式系数的性质,以及通过赋值法求系数之和,属综合基础题.
6.C
【解析】
直接利用复数的除法的运算法则化简求解即可.
【详解】
由得:
本题正确选项:
【点睛】
本题考查复数的除法的运算法则的应用,考查计算能力.
7.D
【解析】
作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合即可得到结论.
【详解】
作出不等式组表示的平面区域如下图中阴影部分所示,
等价于,作直线,向上平移,
易知当直线经过点时最大,所以,故选D.
【点睛】
本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
8.D
【解析】
求得定点M的轨迹方程可得,解得a,b即可.
【详解】
设A(-a,0),B(a,0),M(x,y).∵动点M满足=2,
则 =2,化简得.
∵△MAB面积的最大值为8,△MCD面积的最小值为1,
∴ ,解得,
∴椭圆的离心率为.
故选D.
【点睛】
本题考查了椭圆离心率,动点轨迹,属于中档题.
9.B
【解析】
转化为,构造函数,利用导数研究单调性,求函数最值,即得解.
【详解】
由,可知.
设,则,
所以函数在上单调递增,
所以.
所以.
故的取值范围是.
故选:B
【点睛】
本题考查了导数在恒成立问题中的应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.
10.C
【解析】
通过二项式展开式的通项分析得到,即得解.
【详解】
由已知得,
故当时,,
于是有,
则.
故选:C
【点睛】
本题主要考查二项式展开式的通项和系数问题,意在考查学生对这些知识的理解掌握水平.
11.D
【解析】
作,垂足为,过点N作,垂足为G,设,则,结合图形可得,,从而可求出,进而可求得,,由的面积即可求出,再结合为线段的中点,即可求出到的距离.
【详解】
如图所示,
作,垂足为,设,由,得,则,.
过点N作,垂足为G,则,,
所以在中,,,所以,
所以,在中,,所以,
所以,,
所以 .解得,
因为,所以为线段的中点,
所以F到l的距离为.
故选:D

山西省太原市小店区太原四十八中2021-2022学年高三第二次诊断性检测数学试卷含解析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数20
  • 收藏数0 收藏
  • 顶次数0
  • 上传人开心果
  • 文件大小1.62 MB
  • 时间2022-07-24
最近更新