2023年浙江省绍兴义乌市中考数学试卷(Word版) 浙江省绍兴市2023年中考数学试卷 一、选择题 1. (2023·绍兴)如果向东走2m记为+2m,那么向西走3米可记为〔 〕 A. +3m D. 当x>1,y随x的增大而减小 【答案】A 【考点】函数的图象,分段函数 【解析】【解答】解:观察图像可知:图像分为三段,从四个答案来看,界点都是1,从题干来看,就是看B点的左边与右边的图像问题,B点左边图像从左至右上升,y随x的增大而增大,即当x<1,y随x的增大而增大;B点右边图像一段从左至右上升,y随x的增大而增大,一段图像从左至右下降y随x的增大而减小;即当2>x>1时,y随x的增大而减小;x>2时y随x的增大而增大;比拟即可得出答案为:A。 【分析】这是一道分段函数的问题,从四个答案来看,界点都是1,从题干来看,就是看 B点的左边与右边的图像问题,B点左边图像从左至右上升,y随x的增大而增大,B点右边图像一段从左至右上升,y随x的增大而增大,一段图像从左至右下降y随x的增大而减小。 7. (2023·绍兴)学校门口的栏杆如下图,栏杆从水平位置BD绕O点旋转到AC位置,AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4,AB=,CO=1m,那么栏杆C端应下降的垂直距离CD为〔 〕 A. B. C. D. 【答案】C 【考点】平行线的判定与性质,相似三角形的判定与性质 【解析】【解答】解:∵AB⊥BD,CD⊥BD,∴AB∥CD,∴△ABO∽△CDO,∴AO∶CO=AB∶CD,即4∶1=∶CD,∴CD= 故答案为:C。 【分析】根据垂直于同一直线的两条直线互相平行得出AB∥CD,根据平行于三角形一边的直线截其他两边,所截得三角形与原三角形相似得出△ABO∽△CDO,根据相似三角形对应边城比例得AO∶CO=AB∶CD,从而列出方程,求解即可。 8. (2023·绍兴)利用如图1的二维码可以进行身份识别,某校建立了一个身份识别系统,图2是某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20。如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生,表示6班学生的识别图案是〔 〕 A. B. C. D. 【答案】B 【考点】代数式求值 【解析】【解答】解:A、序号为:1×23+0×22+1×21+0×20=11,故A不适合题意; B、序号为:0×23+1×22+1×21+0×20=6,故B适合题意; C、序号为:1×23+0×22+0×21+1×20=9,故C不适合题意; D、序号为:0×23+1×22+1×21+1×20=7,故D不适合题意; 故答案为:B 【分析】根据黑色小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20 , 将每一个身份识别系统按程序算出序号,即可一一判断。 9. (2023·绍兴)假设抛物线y=x2+ax+b与x轴两个交点间的距离为2,称此抛物线为定弦抛物线。某定弦抛物线的对称轴为直线x=1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点〔 〕 A. 〔-3,-6〕 B. 〔-3,0〕 C. 〔-3,-5〕 D. 〔-3,-1〕 【答案】B 【考点】二次函数图象的几何变换,待定系数法求二次函数解析式 【解析】【解答】解:根据定弦抛物线的定义及某定弦抛物线的对称轴为直线x=1,从而得出该抛物线与两坐标轴的交点为〔0,0〕,〔2,0〕,将〔0,0〕,〔2,0〕分别代入y=x2+ax+b得b=0,a=-2,故抛物线的解析式为:y=x2-2x=(x-1)2-1,将将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线为:y=(x+1)2-4;然后将x=-3代入得y=0,故新抛物线经过