Word
— 1 —
高中必修二数学知识点总结
高中数学始终是一个难点,想要学好数学肯定要回归课本,学好基础学问。下面我给大家共享一些高中必修二数学学问点,盼望能够关心大家,欢迎阅读!
高中必修二上向下)
注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度.
Word
— 6 —
3、空间几何体的直观图——斜二测画法
斜二测画法特点:①原来与x轴平行的线段仍旧与x平行且长度不变;
②原来与y轴平行的线段仍旧与y平行,长度为原来的一半.
4、柱体、锥体、台体的表面积与体积
(1)几何体的表面积为几何体各个面的面积的和.
(2)特别几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)
(3)柱体、锥体、台体的体积公式
高中必修二数学学问点3
圆的方程
1、圆的定义:平面内到肯定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.
2、圆的方程
(1)标准方程,圆心,半径为r;
(2)一般方程
当时,方程表示圆,此时圆心为,半径为
当时,表示一个点;当时,方程不表示任何图形.
(3)求圆方程的(方法):
一般都采纳待定系数法:,若利用圆的标准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要留意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.
Word
— 7 —
3、高中数学必修二学问点(总结):直线与圆的位置关系:
直线与圆的位置关系有相离,相切,相交三种状况:
(1)设直线,圆,圆心到l的距离为,则有;;
(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【肯定两解】
(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2
4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.
设圆,
两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.
当时两圆外离,此时有公切线四条;
当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;
当时两圆相交,连心线垂直平分公共弦,有两条外公切线;
当时,两圆内切,连心线经过切点,只有一条公切线;
当时,两圆内含;当时,为同心圆.
留意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线
5、空间点、直线、平面的位置关系
公理1:假如一条直线的两点在一个平面内,那么这条直线是全部的点都在这个平面内.
Word
— 7 —
应用:推断直线是否在平面内
用符号语言表示公理1:
公理2:假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线
符号:平面α和β相交,交线是a,记作α∩β=a.
符号语言:
公理2的作用:
①它是判定两个平面相交的方法.
②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点.
③它可以推断点在直线上,即证若干个点共线的重要依据.
公理3:经过不在同一条直线上的三点,有且只有一个平面.
推论:始终线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面.
公理3及其推论作用:①它是空间内确定平面的依据②它是证明平面重合的依据
公理4:平行于同一条直线的两条直线相互平行
高中必修二数学学问点4
【一】
1、柱、锥、台、球的结构特征
(1)棱柱:
Word
— 8 —
定义:有两个面相互平行,其余各面都是四边形,且每相邻两个四边形的公共边都相互平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱
几何特征:两底
高中必修二数学知识点总结 来自淘豆网m.daumloan.com转载请标明出处.