下载此文档

“圆的标准方程”教学设计与反思.doc


文档分类:中学教育 | 页数:约7页 举报非法文档有奖
1/7
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/7 下载此文档
文档列表 文档介绍
“圆的标准方程”教学设计和反思
霸州市第四中学 朱春红
一.教学目的
知识和技能: 在平面直角坐标系中,探究并掌握圆的标准方程;会由圆的方程 写出圆的半径和圆心,能根据条件写我们学习了求曲线的方程的一般步骤,下面我们用求曲线方程的一般步骤来建立圆的标准方程.(精品文档请下载)
2、探究研究:建立圆的标准方程
由学生在黑板上板演,确定圆的根本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r(其中a、b、r都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的间隔 公式让学生写出点M适宜的条件(精品文档请下载)
化简可得:
M(x,y)
x
y
引导学生自己证明为圆的标准方程,得出结论。
方程就是圆心为A(a,b),半径为r的圆的方程,我们把它叫做圆的标准方程。
考虑:圆的方程形式有什么特点?当圆心在原点时,圆的方程是什么?
方程特征:(1)二元二次方程,x,y的系数均为1;
(2)含有a,b,r三个参数;
(3)圆心(a,b),半径为r
练习(口答):圆的标准方程,请说出圆心和半径。
2。 点,圆:,

练习:根据条件,求圆的标准方程
探究:点和圆的关系的判断方法:
(1)d〉r,点在圆外
(2)d=r,点在圆上
(3)d<r,点在圆内点
点在圆内 ;
点在圆上 ;
点在圆外 。
3、知识应用和解题研究:
例(1):写出圆心A(2,—3),半径长等于5的圆的方程,并判断点M(5,7),N(1,0),Q(7,1)是在圆上,圆内,圆外?(精品文档请下载)
分析探求:可以从计算点到圆心的间隔 入手。
例(2):圆心为Q的圆经过点A(2,-3)和B(—2,—5),且圆心在直线L:x—2y—3=0上,求圆的标准方程.(精品文档请下载)
师生共同分析:从圆的标准方程 可知,要确定圆的标准方程,可用待定系数法确定三个参数.(学生自己运算解决)(精品文档请下载)
练习:圆心为Q的圆经过点A(2,—3)和B(-2,-5),且圆心在直线L:x—2y-3=0上,求圆的标准方程。(精品文档请下载)
师生共同分析: ,由于圆心和A,B两点的间隔 相等,所以圆心在险段AB的垂直平分线m上,又圆心在直线上,因此圆心是直线和直线m的交点,半径长等于圆心到A或B的间隔 .(精品文档请下载)
(老师板书解题过程.)
总结归纳:(老师启发,学生自己比较、归纳)比较例(2)、例(3)可得出外接圆的标准方程的两种求法:
根据题设条件,列出关于的方程组,解方程组得到得值,写出圆的标准方程。
根据确定圆的要素,和题设条件,分别求出圆心坐标和半径大小,然后再写出圆的标准方程.
4。课堂小结

“圆的标准方程”教学设计与反思 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数7
  • 收藏数0 收藏
  • 顶次数0
  • 上传人qnrdwb
  • 文件大小163 KB
  • 时间2022-07-27