高二数学必修五知识点精选总结5篇
直到高二,学生的学习自觉性增强,获取知识一方面从教师那里接受,但这种接受也应该有别于以前的被动接受,它是在经过自己思考、理解的基础上接受。另一方面通过自学主动获取知识。能否顺利实现转变,是成绩能否-1,1,….
(4)数列的项与它的项数是不同的,数列的项是指这个数列中的某一个确定的数,是一个函数值,也就是相当于f(n),而项数是指这个数在数列中的位置序号,它是自变量的值,相当于f(n)中的n.
(5)次序对于数列来讲是十分重要的,有几个相同的数,由于它们的排列次序不同,构成的数列就不是一个相同的数列,:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,而{2,3,4,5,6}中元素不论按怎样的次序排列都是同一个集合.
(1)根据数列的项数多少可以对数列进行分类,,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表示有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示无穷数列.
(2)按照项与项之间的大小关系或数列的增减性可以分为以下几类:递增数列、递减数列、摆动数列、常数列.
数列是按一定次序排列的一列数,其内涵的本质属性是确定这一列数的规律,这个规律通常是用式子f(n)来表示的,
这两个通项公式形式上虽然不同,但表示同一个数列,正像每个函数关系不都能用解析式表达出来一样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,又不一定是的,仅仅知道一个数列前面的有限项,无其他说明,数列是不能确定的,:数列1,2,3,4,…,
由公式写出的后续项就不一样了,因此,通项公式的归纳不仅要看它的前几项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前几项写出其通项公式,没有通用的方法可循.
再强调对于数列通项公式的理解注意以下几点:
(1)数列的通项公式实际上是一个以正整数集N_或它的有限子集{1,2,…,n}为定义域的函数的表达式.
(2)如果知道了数列的通项公式,那么依次用1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,用数列的通项公式也可判断某数是否是某数列中的一项,如果是的话,是第几项.
(3)如所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式.
如2的不足近似值,精确到1,,,, 1,…所构成的数列1,,,, 2,…就没有通项公式.
(4)有的数列的通项公式,形式上不一定是的,正如举例中的:
(5)有些数列,只给出它的前几项,并没有给出它的构成规律,那么仅由前面几项归纳出的数列通项公式并不.
高二数学必修五知识点总结4
1、数列的定义及数列的通项公式:
①. an=f(n),数列是定义域为N
的函数f(n),当n依次取1,2,×××时的一列函数值 ②
若S0=0,则an不分段;若S0¹0,则an分段iii. 若an+1=pan+q,则可设an+1+m=p(an+m)解得m,得等比数列{an+m}
ìSn=f(an)
iv. 若Sn=f(an),先求a
1í得到关于an+1和an的递推关系式
S=f(a)n+1în+1ìSn=2an+1
例如:Sn=2an+1先求a1,再构造方程组:íÞ(下减上)an+1=2an+1-2an
îSn+1=2an+1+1
:
① 定义:a
n+1-an=d(常数),证明数列是等差数列的重要工具。 ② 通项d¹0时,an为关于n的一次函数;
d>0时,an为单调递增数列;d<0时,a
n为单调递减数列。
高二数学必修五知识点精选总结5篇 来自淘豆网m.daumloan.com转载请标明出处.