IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】
高中统计与概率知识点精编WORD版
高中统计与概率知识点(文科)
(一)统计
一、简单随机抽样
:,标准差越小越稳定.
,如果抽样的方法比较合理,那么样本可以反映总体的信息,但从样本得到的信息会有偏差。在随机抽样中,这种偏差是不可避免的。
虽然我们用样本数据得到的分布、均值和标准差并不是总体的真正分布、均值和标准差,而只是一个估计,但这种估计是合理的,特别是当样本量很大时,它们确实反映了总体的信息。
6.(1)如果把一组数据中的每一个数据都加上或减去同一个共同的常数,标准差不变
(2)如果把一组数据中的每一个数据乘以一个共同的常数k,标准差变为原来的k倍
(3)一组数据中的最大值和最小值对标准差的影响,区间的应用;
“去掉一个最高分,去掉一个最低分”中的科学道理
:
中位数:在直方图中,中位数左边和右边的直方图的面积应该相等。
平均数:在直方图中,平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和。
六、两个变量的线性相关
1、概念:
(1)回归直线方程:散点图中的点从整体上看分布在一条直线附近,这条直线叫回归直线.
(2)回归系数:直线方程y=kx+b,我们把直线方程记作:y=bx+a,其中,a,,a是截距.
2.最小二乘法
3.直线回归方程的应用
(1)描述两变量之间的依存关系;利用直线回归方程即可定量描述两个变量间依存的数量关系
(2)利用回归方程进行预测;把预报因子(即自变量x)代入回归方程对预报量(即因变量Y)进行估计,即可得到个体Y值的容许区间。
(3)利用回归方程进行统计控制规定Y值的变化,通过控制x的范围来实现统计控制的目标。如已经得到了空气中NO2的浓度和汽车流量间的回归方程,即可通过控制汽车流量来控制空气中NO2的浓度。
(二)概 率
随机事件的概率及概率的意义
1、基本概念:
(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;
(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;
(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;
(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;
(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次
试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=为
事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的
频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。
(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数
n的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,
这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机
事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率。
概率的基本性质
1、基本概念:
(1)事件的包含、并事件、交事件、相等事件
(2)若A∩B为不可能事件,即A∩B=ф,那么称事件A与事件B互斥;
(3)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件;
(4)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)
2、概率的基本性质:
1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;
2)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);
3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);
4)互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事件A 与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生B不发生;(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形。
—
高中统计与概率知识点精编WORD版 来自淘豆网m.daumloan.com转载请标明出处.