高中文科导数知识点汇总
高中文科导数知识点汇总
导数公式及知识点
1、函数的单调性
(1)设x1、x2[a,b],x1x2那么
f(x1)f(x2)0f(x)在[a,b]上是增函数;f(x1)f(x2)0f(x)在[a,b]上是减
高中文科导数知识点汇总
高中文科导数知识点汇总
导数公式及知识点
1、函数的单调性
(1)设x1、x2[a,b],x1x2那么
f(x1)f(x2)0f(x)在[a,b]上是增函数;f(x1)f(x2)0f(x)在[a,b]上是减函数.
(2)设函数yf(x)在某个区间内可导,若f(x)0,则f(x)为增函数;若f(x)0,则f(x)为减函数.
2、函数的奇偶性
对于定义域内任意的x,都有f(x)f(x),则f(x)是偶函数;对于定义域内任意的x,都有f(x)f(x),则f(x)是奇函数。奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
3、函数yf(x)在点x0处的导数的几何意义
函数yf(x)在点x0处的导数是曲线yf(x)在P(x0,f(x0))处的切线的斜率f(x0),相应的切线方程是yy0f(x0)(xx0).
4、几种常见函数的导数
①C"0;②(xn)"nxn1;③(sinx)"cosx;④(cosx)"sinx;⑤(ax)"axlna;⑥(ex)"ex;⑦(log5、导数的运算法则
(1)(uv)uv.(2)(uv)uvuv.(3)()v6、会用导数求单调区间、极值、最值
""""""ax)"1xlna";⑧(lnx)1x
u"uvuvv2""(v0).
7、求函数yfx的极值的方法是:解方程fx0.当fx00时:(1)如果在x0附近的左侧fx0,右侧fx0,那么fx0是极大值;(2)如果在x0附近的左侧fx0,右侧fx0,那么fx0是极小值.
第1页(共2页)
:导数及其应用
(1)一般地,设函数y=f(x)在某个区间可导,如果f′(x)>0,则f(x)为增函数;如果f′(x)0是f(x)在某个区间上为增函数的充分非必要条件,f′(x)0解不等式,得x的范围,就是递增区间;③令f′(x)0,则f(x)为增函数;如果f′(x)0是f(x)在某个区间上为增函数的充分非必要条件,f′(x)0解不等式,得x的范围,就是递增区间;③令f′(x)<0解不等式,得x的范围,就是递增区间。:
(1)极大(小)值:如果x=c是函数f(x)在某个区间(u,v)上的最大值点,即不等式f(c)≥(≤)f(x)对于一切x∈(u,v)成立,就说f(x)在x=c处取到极大值f(c),并称c为函数f(x)的一个极大(小)值点,f(c)为f(x)的一个极大(小)值。
第1页(共2页)(2)求可导函数f(x)的极值的步骤:①确定函数的定义区间,求导数f′(x);②求f(x)的驻点,即求方程f′(x)=0的根;(3)分区间,列表。
高中文科导数知识点汇总 来自淘豆网m.daumloan.com转载请标明出处.