该【北京理工大学大学物理1上知识点总结 】是由【1485173816】上传分享,文档一共【17】页,该文档可以免费在线阅读,需要了解更多关于【北京理工大学大学物理1上知识点总结 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。第1页
一质点运动学
知识点:
1. 参考系
为了确定物体的位置而选作参考的物体称为参考系。要作定量描述,还应在参考系上建立坐标系。
2. 位置矢量及运动方程
位置矢量(位矢):是从坐标原点引向质点所在的有向线段,用矢量r表示。位矢用于确定质点在空间的位置。位矢及时间t的函数关系:
称为运动方程。
位移矢量:是质点在时间△t内的位置改变,即位移:
轨道方程:质点运动轨迹的曲线方程。
3. 速度及加速度
平均速度定义为单位时间内的位移,即:
速度,是质点位矢对时间的变化率:
平均速率定义为单位时间内的路程:
速率,是质点路程对时间的变化率:
加速度,是质点速度对时间的变化率:
4. 法向加速度及切向加速度
加速度
法向加速度,方向沿半径指向曲率中心(圆心),反映速度方向的变化。
切向加速度,方向沿轨道切线,反映速度大小的变化。
第2页
在圆周运动中,角量定义如下:
角速度
角加速度
而,,
5. 相对运动
对于两个相互作平动的参考系,有
重点:
掌握位置矢量、位移、速度、加速度、角速度、角加速度等描述质点运动及运动变化的物理量,明确它们的相对性、瞬时性及矢量性。
;掌握圆周运动的角量及线量的关系,并能灵活运用计算问题。
、速度变换,能分析及平动有关的相对运动问题。
难点:
三、功及能
知识点:
功的定义
质点在力F的作用下有微小的位移dr(或写为ds),则力作的功定义为力及位移的标积即
对质点在力作用下的有限运动,力作的功为
在直角坐标系中,此功可写为
应当注意:功的计算不仅及参考系的选择有关,一般还及物体的运动路径有关。只有保守力(重力、弹性力、万有引力)的功才只及始末位置有关,而及路径形状无关。
质点动能定理:合外力对质点作的功等于质点动能的增量。
质点系动能定理:系统外力的功及内力的功之及等于系统总动能的增量。
应当注意,动能定理中的功只能在惯性系中计算。
重力势能:EP=±mgh+c,零势面的选择视方便而定。
弹性势能:
规定弹簧无形变时的势能为零,它总取正值。
万有引力势能:c由零势点的选择而定。
:
即:外力的功及非保守内力的功之及等于系统机械能的增量。
外力的功及非保守内力的功之及等于零时,系统的机械能保持不变。即
重点:
。
,会计算重力势能、弹性势能及万有引力势能。
第3页
,并能用它们分析、解决质点在平面内运动时的力学问题。
、求解综及问题的思想及方法。
难点:
。
。
、求解综及问题的思想及方法。
三动量角动量守恒
知识点:
合外力的冲量等于质点(或质点系)动量的增量。其数学表达式为
对质点
对质点系
在直角坐标系中有
当一个质点系所受合外力为零时,这一质点系的总动量矢量就保持不变。即
在直角坐标系中的分量式为
质点的角动量:对某一固定点有
角动量定理:质点所受的合外力矩等于它的角动量对时间的变化率
若对某一固定点而言,质点受的合外力矩为零,则质点的角动量保持不变。即
重点:
掌握动量定理。学会计算变力的冲量,并能灵活应用该定理分析、解决质点在平面内运动时的力学问题。
掌握动量守恒定律。掌握系统动量守恒的条件以及运用该定律分析问题的思想及方法,能分析系统在平面内运动的力学问题。
掌握质点的角动量的物理意义,能用角动量定理计算问题。
掌握角动量守恒定律的条件以及运用该定律求解问题的基本方法。
难点:
计算变力的冲量。
、解决质点在平面内运动时的力学问题。
。
四刚体力学基础
知识点:
。
:
1)、刚体定轴转动的角加速度及它所受的合外力矩成正比,及刚体的转动惯量成反比.
2).角量及线量的关系:
:
(离散质点)
(连续分布质点)
平行轴定理
第4页
:
1)力矩的功:
2)转动动能:
3)刚体定轴转动的动能定理:
刚体的机械能守恒定律:若只有保守力做功时,则:
定轴转动刚体的角动量
刚体角动量定理
1)角动量守恒定律
刚体所受的外力对某固定轴的合外力矩为零时,则刚体对此轴的总角动量保持不变。即
2)定轴转动刚体的机械能守恒
只有保守力的力矩作功时,刚体的转动动能及转动势能之及为常量。
式中hc是刚体的质心到零势面的距离。
6定轴转动的动力学问题解题基本步骤
首先分析各物体所受力及力矩情况,然后根据已知条件及所求物理量判断应选用的规律,最后列方程求解.
1).求刚体转动某瞬间的角加速度,一般应用转动定律求解。如质点及刚体组成的系统,对质点列牛顿运动方程,对刚体列转动定律方程,再列角量及线量的关联方程,联立求解.
2).刚体及质点的碰撞、打击问题,在有心力场作用下绕力心转动的质点问题,考虑用角动量守恒定律
3).在刚体所受的合外力矩不等于零时,比如木杆摆动,受重力矩作用,一般应用刚体的转动动能定理或机械能守恒定律求解。
另外:实际问题中常常有多个复杂过程,要分成几个阶段进行分析,分别列出方程,进行求解.
第5页
质点运动及刚体定轴转动描述的对照
质点的平动
刚体的定轴转动
速度
加速度
角速度
角加速度
质量m
转动惯量
动量
角动量
力
力矩
质点运动规律及刚体定轴转动的规律对照
运动定律
转动定律
质点的平动
刚体的定轴转动
动量定理
角动量定理
动量守恒定律
角动量守恒定律
力的功
力矩的功
动能
转动动能
第6页
动能定理
动能定理
重力势能
重力势能
机械能守恒
只有保守力作功时
机械能守恒
只有保守力作功时
重点:
掌握描述刚体定轴转动的角位移、角速度及角加速度等概念及联系它们的运动学公式。
掌握刚体定轴转动定理,并能用它求解定轴转动刚体及质点联动问题。
、定轴转动刚体的动能及重力势能,能在有刚体做定轴转动的问题中正确的应用机械能守恒定律。
,并能对含有定轴转动刚体在内的系统正确应用角动量守恒定律。
难点:
正确运用刚体定轴转动定理求解问题。
。
五机械振动
知识点:
简谐运动
微分方程:,弹簧振子F=-kx,,单摆
振动方程:
振幅A,相位(),初相位,角频率。。周期T,频率。
由振动系统本身参数所确定;A、可由初始条件确定:
A=,;
2由旋转矢量法确定初相:
初始条件:t=0
第7页
由
得
2)由
得
3)由
得
4)由
得
3简谐振动的相位:ωt+φ:
1)t+φ→(x,v)存在一一对应关系;
2)相位在0→2π内变化,质点无相同的运动状态;
相位差2nπ(n为整数)质点运动状态全同;
3)初相位φ(t=0)描述质点初始时刻的运动状态;
(φ取[-π→π]或[0→2π])
4)对于两个同频率简谐运动相位差:△φ=φ2-φ1.
简谐振动的速度:V=-Aωsin(ωt+φ)
加速度:a=
简谐振动的能量:
E=EK+EP=,
作简谐运动的系统机械能守恒
4)两个简谐振动的合成(向同频的合成后仍为谐振动):
1)两个同向同频率的简谐振动的合成:
X1=A1cos(),X2=A2cos()
合振动X=X1+X2=Acos()
其中A=,tan。
相位差:=2k时,A=A1+A2,极大
=(2k+1)时,A=A1+A2极小
若
两个相互垂直同频率的简谐振动的合成:
x=A1cos(),y=A2cos()
其轨迹方程为:
如果
其合振动的轨迹为顺时针的椭圆
其合振动的轨迹为逆时针的椭圆
第8页
相互垂直的谐振动的合成:若频率相同,则合成运动轨迹为椭园;若两分振动的频率成简单整数比,合成运动的轨迹为李萨如图形。
同向异频的合成:拍现象,拍频。
重点:
1、熟记振动图像;
2、掌握各个物理量的计算公式;
3、掌握、熟记初相的确定;
4、理解、掌握振动的合成。
难点:
1、用旋转矢量法确定初相;
2、两种振动的合成及合成后A及φ的确定。
六机械波
知识点
1、机械波的几个概念:
1)机械波产生条件:
1)波源;2)弹性介质
机械振动在弹性介质中的传播形成波,波是运动状态的传播,介质的质点并不随波传播.
2波的分类:
1)横波:振动方向及传播方向垂直;
2)纵波:振动方向及传播方向平行,靠波的疏密部传播。
3描述波的几个物理量:
1)波长λ:一个完整波形的长度;
2)周期T:波前进一个波长的距离所需要的时间;
3)频率ν:单位时间内波动所传播的完整波的数目;
4)波速μ:某一相位在单位时间内所传播的距离。
周期或频率只决定于波源的振动;波速只决定于媒质的性质;不同频率的波在同一介质中波速相同;波在不同介质中频率不变。
5)波线:沿波传播方向的有向线段。它代表波的传播方向。
波面:振动相位相同的所构成的曲面,又称波阵面。
2、平面简谐波的波函数
y=Acos[+]μ沿x轴正方向;
y=Acos[+]μ沿x轴负方向;
y=Acos[2πν(t-x/μ)+φ;
y=Acos[+].
相距为的两点振动的相位差:
第9页
3波的能量
1)、波的动能及势能:
2)、波的能量:
结论:1)在波动传播的媒质中,任一体积元的动能、势能、总机械能均随x、t作周期性变化,且变化是同相位的.
2)任一体积元都在不断地接收及放出能量,.
3)、能量密度:单位介质中的波动能量。
平均能量密度:
4)、能流及能流密度:
能流:单位时间内垂直通过介质中某一面积的能量。
P=wuS(u:波速,S:横截面积)
平均能流:
能流密度(波强):垂直通过单位面积的平均能流。
4惠更斯原理波的衍射及干涉
1、惠更斯原理:
波动所到达的媒质中各点,都可以看作为发射子波的波源,而后一时刻这些波的包络便是新的波前。
2、波的衍射:波在传播过程中,遇到障碍物时其传播方向发生改变,绕过障碍物的边缘继续传播。
3、波的干涉:
1)波的叠加原理:
1波的独立作用原理——几列波相遇后仍保持它们原有的特性(频率、波长、振幅、传播方向)不变,互不干扰地各自独立传播。
——在相遇区域内任一点的振动为各列波单独存在时在该点所引起的振动位移的矢量及。
2)波的干涉:频率相同、振动方向平行、相位相同或相位差恒定的两列波相遇时,使某些地方振动始终加强,而使另一些地方振动始终减弱的现象,称为波的干涉现象.
干涉条件:同振动方向,同振动频率,相位差恒定。
相干波源:
若有两个波源,它们的振动方向相同、频率相同、周相差恒定,称这两波源为相干波源。
3)干涉条纹出现的条件:
设两相干波源S1及S2激发的相干波分别为:
设两相干波源S1及S2激发的相干波分别为:
在相遇区域内P点的振动为两同方向同频率振动的合成。合振幅为
相位差:
波程差:
4)、干涉相长及干涉相消:
干涉相长(加强)的条件: 即:
即波程差为:
A=A1+A2,当相位差是2π的整数倍或波程差为波长的整数倍时,干涉相长加强。
干涉相消大的条件:
第10页
即波程差为
,当相位差是π的奇数倍或波程差为半波长的奇数倍时,干涉相消。
其他值,
5、驻波方程
1)驻波:是两列同振幅、沿相反方向传播的相干波的干涉。波节间距:
2)波节:波节——振幅为零(静止不动)的点。波腹:波腹——振幅最大的点。
3)驻波方程:
设两列沿同一直线相向传播的同振幅相干波,其初相为零,即
入射波:
反射波:
驻波方程:
4)波节、波腹的位置:
①.波节位置:
即,
②.相邻波节距离
③.波腹位置:
④.相邻波腹距离:
波节及波腹之间的距离为,除波节、波腹外,其它各点振幅。
驻波的波形、能量都不能传播,驻波不是波,是一种特殊的振动。
半波损失:波从波疏媒质入射到波密媒质界面反射时,有相位的突变,称存在半波损失(反之则不存在)。
理论及实验证明:
当波由波密介质入射到波疏介质时,反射点为波腹,反射波及入射波在反射点同相;
当波由波疏介质入射到波密介质时,反射点为波节,反射波及入射波在反射点反相。即反射时入射波的相位出现了p的突变,常把相位跃变p的现象称为半波损失。
重点:
1、波动图像;
2、平面简谐波的波函数的三种形式;
3、干涉、衍射的条件及振动加强、减弱的条件;
4、驻波方程即波腹、波节的位置。
难点:
1、平面简谐波的三种简谐波方程;
2、振动加强减弱的条件;
3、波腹、波节的位置。
北京理工大学大学物理1上知识点总结 来自淘豆网m.daumloan.com转载请标明出处.