下载此文档

河北省廊坊市5月份2022年数学九年级第一学期期末统考试题含解析.doc


文档分类:中学教育 | 页数:约23页 举报非法文档有奖
1/23
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/23 下载此文档
文档列表 文档介绍
该【河北省廊坊市5月份2022年数学九年级第一学期期末统考试题含解析 】是由【相惜】上传分享,文档一共【23】页,该文档可以免费在线阅读,需要了解更多关于【河北省廊坊市5月份2022年数学九年级第一学期期末统考试题含解析 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。2022-2023学年九上数学期末模拟试卷
注意事项
,请将本试卷和答题卡一并交回.
,请务必将自己的姓名、.
、准考证号与本人是否相符.
,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
,点到圆心的距离为,则点和的位置关系是()

,正方形的边长为,对角线相交于点,将直角三角板的直角顶点放在点处,两直角边分别与重叠,当三角板绕点顺时针旋转角时,两直角边与正方形的边交于两点,则四边形的周长()


()
A. B. C. D.
,已知▱ABCD中,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,BF、AD的延长线相交于G,下面结论:①DB=BE;②∠A=∠BHE;③AB=BH;④△BHD∽△( )
A.①②③④ B.①②③ C.①②④ D.②③④
,其中一条对角线长为8,则该菱形的面积为( )

,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是( )
A.① B.② C.③ D.④
,在Rt△ABC中,CE是斜边AB上的中线,CD⊥AB,若CD=5,CE=6,则△ABC的面积是( )

,当时,x的取值范围是()
>2或x<-3 B.-3<x<2
>2或x<-4 D.-4<x<2
,水杯的杯口与投影面平行,投影线的几方向如箭头所示,它的正投影是()
A. B. C. D.
,下列说法中,不正确的是()
A.
C. D.
二、填空题(每小题3分,共24分)
,铅球行进高度y与水平距离x之间的关系是,.
,一下水管横截面为圆形,直径为,下雨前水面宽为,一场大雨过后,水面上升了,则水面宽为__________.
,圆心角120,为则此扇形的弧长是________.
,把△ABC沿AB边平移到△A′B′C′的位置,它们的重叠部分(即图中的阴影部分)的面积是△ABC的面积的一半,若AB=2,则此三角形移动的距离AA′=_______.
,在中,,,,将绕点逆时针旋转得到,连接,则的长为__________.
,是一个立体图形的三种视图,则这个立体图形的体积为______.
,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是_____.
:如图,点是边长为的菱形对角线上的一个动点,点是边的中点,且,则的最小值是_______.
三、解答题(共66分)
19.(10分)用配方法把二次函数y=﹣2x2+6x+4化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.
20.(6分)如图,在中,,,,点从点出发沿以的速度向点移动,移动过程中始终保持,(点分别在线段、线段上).
(1)点移动几秒后,的面积等于面积的四分之一;
(2)当四边形面积时,求点移动了多少秒?
21.(6分)已知抛物线的顶点为,.
(1)求该抛物线的解析式;
(2)以线段为直径的圆与射线相交于点,求点的坐标.
22.(8分)下面是小东设计的“过圆外一点作这个圆的两条切线”的尺规作图过程.
已知:⊙O及⊙O外一点P.
求作:直线PA和直线PB,使PA切⊙O于点A,PB切⊙O于点B.
作法:如图,
①连接OP,分别以点O和点P为圆心,大于OP的同样长为半径作弧,两弧分别交于点M,N;
②连接MN,交OP于点Q,再以点Q为圆心,OQ的长为半径作弧,交⊙O于点A和点B;
③作直线PA和直线PB.
所以直线PA和PB就是所求作的直线.
根据小东设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:∵OP是⊙Q的直径,
∴∠OAP=∠OBP=________°()(填推理的依据).
∴PA⊥OA,PB⊥OB.
∵OA,OB为⊙O的半径,
∴PA,PB是⊙O的切线.
23.(8分)如图,已知二次函数的图象与轴交于、两点(点在点的左侧),与轴交于点,且,顶点为.
(1)求二次函数的解析式;
(2)点为线段上的一个动点,过点作轴的垂线,垂足为,若,四边形的面积为,求关于的函数解析式,并写出的取值范围;
(3)探索:线段上是否存在点,使为等腰三角形?如果存在,求出点的坐标;如果不存在,请说呀理由.
24.(8分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,,每件商品每降价1元,商场平均每天可多售出2件.
(1)若某天该商品每件降价3元,当天可获利多少元?
(2)设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);
(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?
25.(10分)如图,在中,∠C=90°,AC=3,AB=5,点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动;、Q的运动,DE始终保持垂直平分PQ,且交PQ于点D,、Q同时出发,当点P到达点A时停止运动,、Q运动的时间是t秒(t>0).
(1)当t为何值时,?
(2)求四边形BQPC的面积S与t的函数关系式;
(3)是否存在某一时刻t,使四边形BQPC的面积与的面积比为13:15?若存在,,请说明理由;
(4)若DE经过点C,试求t的值.
26.(10分)专卖店销售一种陈醋礼盒,,每月可售出500盒;若销售单价每上涨1元,(50<x<75),专卖店每月销售此种礼盒获得的利润为y元.
(1)写出y与x之间的函数关系式;
(2)专卖店计划下月销售此种礼盒获得8000元的利润,每盒的售价应为多少元?
(3)专卖店每月销售此种礼盒的利润能达到10000元吗?说明理由.
参考答案
一、选择题(每小题3分,共30分)
1、B
【解析】根据点与圆的位置关系进行判断.
【详解】∵⊙O的半径为6cm,P到圆心O的距离为6cm,
即OP=6,
∴点P在⊙O上.
故选:B.
【点睛】
本题考查了点与圆的位置关系:点与圆的位置关系有3种,设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.
2、A
【分析】由四边形ABCD是正方形,直角∠FOE,证明△DOF≌△COE,则可得四边形OECF的周长与OE的变化有关.
【详解】解:四边形是正方形,
,,即
,
又,
随的变化而变化。
由旋转可知先变小再变大,
故选:.
【点睛】
本题考查了用正方形的性质来证明三角形全等,再利用相等线段进行变形,根据变化的线段来判定四边形OECF周长的变化.
3、C
【解析】根据主视图的定义即可得出答案.
【详解】从正面看,共有两列,第一列有两个小正方形,第二列有一个小正方形,在下方,只有选项C符合
故答案选择C.
【点睛】
本题考查的是三视图,比较简单,需要熟练掌握三视图的画法.
4、B
【分析】根据已知及相似三角形的判定方法对各个结论进行分析从而得到最后答案.
【详解】∵∠DBC=45°,DE⊥BC
∴∠BDE=45°,
∴BE=DE
由勾股定理得,DB=BE,
∵DE⊥BC,BF⊥CD
∴∠BEH=∠DEC=90°
∵∠BHE=∠DHF
∴∠EBH=∠CDE
∴△BEH≌△DEC
∴∠BHE=∠C,BH=CD
∵▱ABCD中
∴∠C=∠A,AB=CD
∴∠A=∠BHE,AB=BH
∴正确的有①②③
对于④无法证明.
故选:B.
【点睛】
此题考查了相似三角形的判定和性质:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,,对应角相等.
5、B
【解析】利用因式分解法解方程得到x1=5,x2=3,利用菱形的对角线互相垂直平分和三角形三边的关系得到菱形的边长为5,利用勾股定理计算出菱形的另一条对角线为6,然后计算菱形的面积.
【详解】解:,
所以,,
∵菱形一条对角线长为8,
∴菱形的边长为5,
∴菱形的另一条对角线为,
∴菱形的面积.
故选:B.
【点睛】
本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,.
6、A
【分析】根据题意得到原几何体的主视图,结合主视图选择.
【详解】解:原几何体的主视图是:
.
视图中每一个闭合的线框都表示物体上的一个平面,左侧的图形只需要两个正方体叠加即可.
故取走的正方体是①.
故选A.
【点睛】
本题考查了简单组合体的三视图,中等难度,作出几何体的主视图是解题关键.
7、C
【分析】根据题意及直角三角形斜边上的中线等于斜边的一半可得:AB=2CE=12再根据三角形面积公式,即△ABC面积=AB×CD=.
【详解】解:∵CE是斜边AB上的中线,
∴AB=2CE=2×6=12,
∴S△ABC=×CD×AB=×5×12=30,
故选:C.
【点睛】
,再根据面积公式即可得出答案.
8、C
【分析】先根据对称轴和抛物线与x轴的交点求出另一交点;再根据开口方向,结合图形,求出y<0时,x的取值范围.
【详解】解:因为抛物线过点(2,0),对称轴是x=-1,
根据抛物线的对称性可知,抛物线必过另一点(-1,0),
因为抛物线开口向下,y<0时,图象在x轴的下方,
此时,x>2或x<-1.
故选:C.
【点睛】
本题考查了抛物线与x轴的交点,解题的关键是利用二次函数的对称性,判断图象与x轴的交点,根据开口方向,形数结合,得出结论.
9、D
【解析】水杯的杯口与投影面平行,即与光线垂直,则它的正投影图有圆形.
【详解】解:依题意,光线是垂直照下的,它的正投影图有圆形,只有D符合,

河北省廊坊市5月份2022年数学九年级第一学期期末统考试题含解析 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数23
  • 收藏数0 收藏
  • 顶次数0
  • 上传人相惜
  • 文件大小1.31 MB
  • 时间2022-10-15