下载此文档

2023衡水名师原创数学专题卷8.pdf


文档分类:中学教育 | 页数:约26页 举报非法文档有奖
1/26
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/26 下载此文档
文档列表 文档介绍
该【2023衡水名师原创数学专题卷8 】是由【cby201601】上传分享,文档一共【26】页,该文档可以免费在线阅读,需要了解更多关于【2023衡水名师原创数学专题卷8 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。:.
2023

120150
 !"#$ %&'() #$ *&
+I
- .
/0 -1 283 '43 5'2405$43 6789:;<
,>?/;***@AB CDE85.
1.$GHIJ<'Ky=8IJNO@-.
TUVWX“Z[
\])'[Z
^_`'[aBbcd'
efTghi$8jklm<'noK8IJplmK8qr'sno
K8tuvpuK8Iw8xy'zK=sinx8Iw€@-.
:.
4x
y=r„8IJ€…()
x+1
5.‰ŠK/(x)=(x-a)(x-5)(Ž<a>)8IJzI‘’'“UKg(x)='+%8IJ
()
"/0x+2%-3,x<0
/(š=8›œ:@()
[-2+lnx,x>0

7.‰ŠK/(£=¤'-z+¦$(0,3)&?§:›œ'¨©8ª«¬­@()
A.(O,e)B.(O,2e)C.(e,+oo)D.(2e,+oo)
8.²ŠK³x)=k>g8IJµKg(x)8IJ¶·]¸y=x¹º'K³(x)@»3
¼½…28¾K'¿Àxe[(M]
'Ã(x)=g(x)-l,ÄKy=h³x)+/?(x)?3:›:.
œ'¨Çk8ª«¬­@()
A.(l,21og73)B.(-2,-2logs3)C.(-21og53,-l)-log73,-^J
È0 (1 243 '43 5'2205$43 678;<'?É;AB
CDE5Ê˹8Ì5'?Í8Ì0'˹8Ì35)
9.ÎÏrÐÑA5/@ÒÓÎÏrÐÔÕ8Ñ'AQ/Ñ«Ö3'×ÎÏrÐÖd'
Ž¹Ø¶ÙzG×
AQ/Ñ0-5051-100101-150151-200201-300>300
ÎÏrÐÚÛÜÝÞß<ÝÞßàÝÞßáàÞß
GI@âã12ä1åæ20åAQJÑçèéê
GHëì8@()
A.í20î<45Ñ«8<ïðñ·100
B.í20î<8<ÝÞßòó&8îô,
4
C.õã12ä8ö÷:ä8ÎÏrÐÖpÖd
D.øùp'õã12ä&ú8ÎÏrÐû<ú8ÎÏrÐd
10.ÄK/(x)=4*-2,g(X)=k)g“R,Ž<50,Ž4üI.¨K/(x),g(x)$ý/þÿ
()
11.
/(xQe'-eT+V-or,()
A./(x)-1,1!"#M,a$
+&=0:.
B.*+y=/(x)/+y=0ur34
C./(x)#6$a89:#(TO,2<
(x)R***@A3CDE
(1x=2
f(x)=(’",$g(x)="(x)r+Lf(x)+cANCDE
Olog,,|x-2|+l,x^2,a>l
V,W,N$XY()
#-#ZY[D.
xxx2+\]+%_010
aIIc(defg)
Nhijg(kgl4g$ng5!$l20!p)
13.
[qRr/(x)st/(x-4)=u/(x),vO0,2<6$w
x/(X)=z(z>0)O-8,8<A|C}~X,%2,%3$Z_+W+%+Z=
14.$(x)=eJƒAv„AuCDE$…a89:#†
6ˆ‰!YŠwx1‹=^O1,2<ŒŽ,8Ec=,uCA#
16.
f(x)=(2x+l)ex+'+ax(a&R,e‘’“).Av”A3
C•–—,W$˜$™šL#)40$”W)4p$/(x3)<0,a
|hŽg(kgl6g$l70!p)
17.(kgs!10!)
$(x)=a*,g(x)=( |(a>0vawl),/(-1)=1.
(1)ŠL¢£g(x)Ž¤¥¦
(2)~u§¨©ªLx)£g(x);:.
(3)¬­Lx)<g(x),®/¯°ªx89:
18.(kgs!12!)©ª/(x)=&g(x)=Lf-2$³´µ¶·
4
[0,+<¹)º.
19.(kgs!12!)
‰¼/p)=z+(%-2)½+3,vT3/(x)DE.
(1)Š/(X)Ž¤¥$³Ž}¿¥/(X)43¦
(2)g(x)=/(sinx),Šg(x)Ã.
20.(kgs!12!)
/(x)=e*+$nr+l,wieR.
(1)Ä/(x)ÅÆǦ
1Q
(2)G+3Èxw(0,4oo)É$/(x)=e(x)A¶C}~…$Š…"28
9:.
21.(kgs!12!)
/(x)=(x-l)e0g/gwR).
(1)ÄÅÆǦ
(2)È/(Z)A¶CDE$Š…a89:.
22.(kgs!12!)ÊËÌÍÎÏÐ
$Ñ11Ò1ÓÔ30՗$Ö×ØnÙÚÛ
ÜÝP(ß)Éf(Õ)º
p\f+20,(f<25,reN")
-(45,(25W30,feN")'
ÓÚÛåp(Ù)Éf(Õ)º
(2=-/+40(z<30,?eN*).
(1)Gè×ØÓÚÛé#yß$®°ªy/º¥¦(×ØÓÚÛé=è×
ØnÙÚÛÜÝxÓÚÛå)
(2)Šè×ØÓÚÛé$³êªëuÕÚÛéì:.
íîïðŽ¤
1.ï†D
Ž¤†Êñò
$óôuCõå’ö÷õåøu$
$ù/+x=LÑúûü[q×ýþ$ÿ

:.
A,B,CDD
2.!"#A
$%#BD.&'() f(x)=(x+#01sxxeHt,O)U(O,89
/(-x)=(-x+f}os(-x)=-1x+jcosx=-/(x),AB ,f(x)CDB EFBGD
(0,L9cosx>0,N(x+#)>0,O/(x)=(x+J0osx>0,EFC
#A.
3.!"#A
$%#/(-x)Rx-sin(-x)=-(gx-sinq=-x),B f(x)CDB WXYZ
[\EFBDR
]^=RT<0,EFC.
#A.
4.!":A
AY
$%#$cde/(x)=:=/(-%)=-/(g/(gCDB EFC,D,h
X+1
/(1)>0,EFB,A.
4Y
$cie=h/j>0,/(-1)<0,A.
x+1
5.!"#A
$%#hB hx)=(x-a)(x-b)(a>b)n:0<a<l,b<-l,
"0<a<\,
iB g(x)=a"+/HpqrRL tB ,
CG1uvw,
#8(0)=41+y=1+<0,
...Buvw
zL{|!"}#A
6.!"#B
$%#€B “X)ƒ„…WƒX†9‡
 OB /(X)92
ˆ
7.!"#B
$%#B /(X)=Š-‹+?H(0,+00)L9‡
ˆ ŽYh{x)=xe'
g(x)=(x-R),9‡
 g(x)‘(’,“g(X)(X)”•–• C:.
—Cg'(x)=ev(x+1),{˜e(W+l)=›r$…m=1,œ–•žC2e9B
\/m
2
ƒ„n#B f(x)=Ÿ*-a+-H(O,M)L9‡
ˆ O¡ 6¢£¤¥
(2e,+oo)
B.
8.!"#B
$%#hB ¦=§3¨B g(x)XY[\…g(x)=3G
B ©¦ ª«v¬­C2®B ¯xe[O,l]–(x)=g(x)-l=3Rl,
B y=hx)+(x)93
ˆ A4og3X=-(x)93
&
€B y=ziog3xy=-(x)°#
/\²loga3>-2
³´B 0=-083%µ=d©”93
 ·m<0,Nk[OR5<-2A
-2<k<-21og53¡ k¢£¤¥ (-2,-21og53).
#B.
9.!"#ABD
$%#¸¹AQIº £910
»Y100,10
¼Y100,W¹½ ¾¼Y100,A
vwR
¸¹AQIº £¼Y150¸ C4,A¿À¸ #BvwR
4
C.ÁÂ10ÃÄ4¸ÅÆÇÈÉÊÉËÌÍ5¸ÎÍ15¸ÅÆÇÈÉÊÉÏC
ÐÑR
D.ÀÒÊÓÁÂ10ÃLÔÅÆÇÈÕ¹ÔÅÆÇȳËÖDvw1
10.!":AD:.
$%#h()n/(x)=d2 º B ,g(x)=log,„ [ B N d
®B ¯
0<a<1–,f(x)=ax~2×ØÙt,g(x)=log,,|x|H(0,+oo)LÙtœ–AuÛÜ()¯
a>1–,/(x)=ax~2×ØÙÝ,g(x)=log,,\x\H(0,+co)L×ØÙÝœ–DuÛÜ()
AD.
11.!"#ACD
$%#—C[YÞ)xeR,ß9/(-x)=e”àeG+(-x)3àa(-x)=à/(©,{˜,f(x)CD
B WXYZ [\Avw.
f\x)=e'+ev+3x2-a,e/'(x)=-a,…e*+4+3f=0(*),—C
e*>0,eT>0,3/..0,{˜yä(*)å¡ $Ay=f(x){9•žß„ç
C-a,BÐÑ.
è/(x)CÝB Of'(x)..O,Aq,eG+er+3à—Ce+e*ê,3/0,{˜
e'+e-A+3x2..2,¯Në¯x=0–ìíî{˜ï2,Cvw.
e/(x)=1…x=0ð^à.à--+X?=1(_ó0).“g(x)=^à.à-à+x2,·ô1
XX
g'(x)=(x-l)e#(x+l)e'+2x,e/j=(x-l)e'+(x+õ-Ot'(x)=x(e"àeG').¯
x>0–f'(x)>0,¯x=0–t'(x)=0,¯><0–,t'(x)>0,{˜B f(x)CÝB
N"0)=0,{˜¯x>0–ö)>0,Ìg'(x)>0,g(x)×ØÙÝ.]—C[YÞ)
xwO,ß9g(-x)=g(x),{˜g(x)C®B WXYy†[\.zLg(x)H
(F,0)L×ØÙtH(0,+oo)L×ØÙÝO)=ay=g(x)ªø92
 {
˜/(x)HRLªø93
ˆ Dvw.
ACD.
12.!"#ABC
$%#ù€B /(x)úûƒ°{üh„…XYxyäf(x)=r&9‡
ðý
(r=1–9ý
,t&1–9‡
){˜XYtyä/+þ+c=oÿt=1( 
,
X[/(X)]2+(x)+C=0),!"#
"$4=1+1,
=1x1=1,$6=-2,()A,B,-;/01w<4<W67f(x)=1,9$/,z,4$;<=>:.
1,2,******@3A+,B+%&=1*2+2x3+1*3=11,-2|+1=1,$a°=1(M>1),Oa;
PQ-R6()C,-,.
WXY:.ZR[\R^_`#/(x)ab/(x-4)=-/(c,dY/(%)e_`#,
/(D=/(x),
`#fg
hij=2klm/(0)=0,/(x-4)=-f(x)n/(xo8)=/(x),
`#e)8>qrqr`#M
dY/(c\stu0,2v^ew`#,/(x)\stu-2,0v^xew`#6yf(z,{|
/(%)=}(~2>0)\stu-8,8v^/%,%26%36€4/01<‚3<Z6
kl„nX|+…=-12,X3+X4=4,6X]+X2+X3+X4=-12+4=-8.
II
(M>o)
!2
14.†‡YS60)U{e}
`#/(x)=e*-mŽ,
.Z.`#‘6'!“="f•mŽ–,
—`#y=e'!'f•y™,:.
O(e*)=e*
x-0
Ox=lš
O”=eš
œ^(6ž#aŸ; ¡>¢F6O¥U{e}
O†‡>Y¢Y0,O¥U{e}
15.†‡Y(,2)
WXY7/(x)=Inx-ª.
x
/(l)=-l<0,/(2)=In2-1=ln-^>lnl>0,
/()=--=-(-2).
¬>=,e?>4>,
O/()=g(-2)<g(lne2-2)=0,
/()-/(2)<0,
()™ste¢,2¥.
16.†‡Y-¯
WXY/(%)<09$(2x+<-:.
7g(x)=(2x+l)e*+i,/z(x)=-or,g'(x)=(2x+3)*',x=ge²³;6g(x)f•yf
(z.
´µ6¶aNO¸ab/(x)40¹º#xP#6¬»a<0.
g(-3)</i(-3)-5e'2<3a
»¸¼½ab6g(-4)>~(-4),¾7e“>4a,
-l<a
W$À7
<a<-
17.†‡Y(1)/(-l)=a-'=1,()M=2,()/(x)=2“6g(x)
WXY
18.†‡Y`#/(x)!g(x)f•yf(:.
Áf•Â$Y
¶04x<4¸6/(x)>g(x)
¶x=4¸6/(x)=g(x)
¶x>4¸6f(x)<g(x).
WXY
19.†‡Y(1)-1,3e/(Ä)=Å2+(6-2Æ+3
ax2+(b-2)x+3=0
>-1,3
.Z.-1+3=^o^,-1x3=-
aa
(*-fM=-x2+2x+3
W/ÈBd+2x+3<3x<0xN2,
Z./ÈBWÊ>{xIx40x22}
(2)g(x)=/(sinx)=-sin?x+2sinx+3
=-(sinxol)2+4
Xv-l<sinx<1,0<g(x)<4
6g(x);Í>u0,4v
WXY
20.†‡:(1)f'(x)=ex+m,
¶Ï.0¸6f\x)>0Ð/(x)\(-co,+oo)^ÒÓÔwš
¶6~<0¸67f\x)=e*+~7=0, x=ln(-m),
xe(YO,In(-}))¸6f'(x)<0,f(x)ÒÓÔÖ6
x×(ln(-w),+oo)¸6f'(x)>0,/(x)ÒÓÔw.
œ^6¶}.0¸6f(x)\(-oo,+oo)^ÒÓÔwš
¶~?<0¸6/(x)\(ro/n(-Ø)^ÒÓÔÖ6\(ln(T~),e)^ÒÓÔw.
(2)ÚÛn6¶vÜ(0,+oo)¸6Ý+y+1=^Þ+±
/ž#,
22:.
121x121x
-x+4k4eT~+4k4e
m=2-----2-------,àg*)=2--------2------,
xx
-x2---ev(x-l)&-1)(x+1)-eA
g'(X)=--------J-----------=------------2--------------=
rX-
(1)n6¶Ï=1¸6/(c(0,+00)^ÒÓÔw6
="(X)=e*-X+1>/(0)=2,¾e]>X+1,
(x+1)4eª<(x+1)4(x+1)=4(x+1)<0,
222
.,.¶0vxv1¸6g'(x)>0,
¶x>l¸6g'(x)vO,
g(x)\(0,1)^ÒÓÔw,\(1,400)^ÒÓÔÖ,
.,.g(x)„g(l)=14e6d¶x-0¸6g(x)f-8,¶xf+8¸6g(x)4F6
Zž#mŸ; ¡>(-00,14e).
WXY
21.†‡:áWYÚÛ$f(x)=x(e*4a)
ⶸ,7f(x)>0, x>0š7f(x)<0, x<0,
“X)(-8,0)^ÒÓÔÖ6\(0,2)^ÒÓÔwš
ã¶a>0¸67/'(x)=0, x=0x=lna,
(i)¶0<a<l¸6-f(%)>0, xclnax>0š7/(%)<0, InacxcO,
A/(x)(-a),Ina)ä(0,+8)^ÒÓÔw,(Ina,0)^ÒÓÔ֚
(ii)¶a=l¸6f(x)=x(e=1)20,.=.“X)\R^ÒÓÔwš
(iii)¶M>1¸676'(x)>0, x<0x>lnaš7f'(x)<0, Ocxclna,
A/(x)(-oo,0)ä(Ina,+oo)^ÒÓÔw,(O,lna)^ÒÓÔ֚
(2)1$¶0<a<l¸6/(x)\(-8,Ina)ä(0,+8)^ÒÓÔw6(Ina,0)^ÒÓÔ
Ö6.../(x)\x=lnaåŸ$²æ;f(lna),:.
=š/(lnD)=a(lna-l)--t71n2D=-^/[(lna-l)2+l]<0,.Z.çè¸/éêÚÛ;
¶M=1¸6~x)\R^ÒÓÔw6,»¸/éêÚۚ
¶¸6/(ë(ì,0)ä(lna,+D>)^ÒÓÔw6\(0,In”)^ÒÓÔÖ;
.Z.~”*=0åŸ$²æ;~0),=»¸/éêÚÛ;
¶.4O¸6~ë(f,0)^ÒÓÔÖ6(0,í)^ÒÓÔw,
V/(0)=-l<0,="(x)\(0,”)^,
(i)¶a<0¸67!=min{ln(-a),-l-J5},¶x<x()¸,
,.*/(x)=(x-l)ex-^ox2
>-ci(x-1)4cix^44(x?+2x-2)>0
.:“X)(-8,0)^.»¸éêÚÛ;
(ii)¶a=O¸6¶x<0¸6/(x)=(x-l)ev<0,
.../(X)(-8,0)^6»¸/éêÚۚ
œ^(6ž#MŸ; ¡>(-8,0).
WXY
22.†‡Y(1)1ïðñò>yó6 y=P-M6
()+20)(404),(/<25,feNY)
})'[45x(40-/),(25</<30,ZeN)'
-/+20f+800(r<25/wN*)
¾Yy=1800-451(25WY30,feN*)
-(r-10)2+900,G<25,/QN")
(2)y=1800-45Z,(25</<30,ZeN')=
¶0<f<25¸6Z=10,=900š
¶254r430¸6f=25,=675.
O(ôïðñõòöæ;>900ó611÷10ïïðñõòöæ
WXY2023øùúûüý#þÿ


  
I():.
85!40!"#$%&'()*+
(,-./01%"2
-,8cos2a%9:2
D24c24
Ac.---D
-i2525-
='8cos7T
+a+
I1234
A../c2.-3">
6
°cos7670-sin77°sin227°=()
B6c0
22
-sin(-60)sin120tan75°-1/
+--------T=()
1+tan75

D.----------------cD
2323-44-4-T
["@ABCsin2al+sin3=cos/?1-cos2a8DEFG
%,2
-=]
/=]+y0=]+/?=]
=1+2Gcosa8sin(2a--)=()
6
%HIAB,C%JK!L:a,”"=60"/=N,c=g,8sinA=
\/64-5/2"-0r\[21
A.----------------D.----------------C.------U.-
4422
%HIA3,"%JK!L:a,b,c,45qsinA-0sin8=4csinC,cosA=-4,8=
4c
2"

O45!20!"#$%()+P(-.
/01"QRJ%S5!+T%S0!R!J%S3!"2
)9:W%,2
2

°cos15°
66:.
Ctan30°1+cos60°
1-tan230°2
54
10.AWC),sinA=4,cosB=-8DEFG
%,
135
4
=±=4
135
=4
65
Y
%+2
A.VA3C)a:h:c=sinA:sin3:sinC
B,VABC)Zsin2A=sin23,8VABC:[\]I^
)sinA>sin8,%_0`a
1jr
D.VAfiC)ZsinA=-8A=-
26
12.“BC)IA,5,C%JK!L:a,A,cDEFG)
%(+2
>58sinA>sin3
=sin2B8AABCbc:[\]I^deI]I^
/JCOSA=c,8Z\4BCf:eIOI^
=]M=2Cg]I^+hi8b%j9kl,6,2
Hm2
]
n45!20!"2
15.oABC)IApC%JK!L:0"c,c=4,a=4&sinA,CIC:qI8AABC
rs%tu9:.
)IAvC%JK!L:a,Z>,c,Zcos4=-l,A=5,3sinC=2sinA^lJc=
3
&i 670!"
sin2a+xcos2a2
17.w!10!245
sina-\/3cosa3:.
(l)^<cos^2a--J%9y
(2)45zCI(3%{K,|Ia%{K}~€*ƒ%1cos/7%9.
CDD1n
18.(w!12!)oABC)cosA=4,tan4+cot4=1
13223
(1)cos(A-B)%9y
(2)cosY4%9.
2
19.(w!12!)45A+8+C=7i,sinA+sinB+sinC=cosAcos8+cosCwO,1
cos24+cos28+cos2c
1F…%9.
sinA+sinn+sinC
2().(w!12!)VABC)IAv"%JK!L:o,Ac"
†Z‡=3c,/?=ˆ,cos8=2,1c%9y
3
‰ZŠ‹=*1sin(B+A%9"
a2b\2)
21.(w!12!)Œr&K^AfiCD),NA/5C=90",ZA=45°,AB=2,BD=5.
(1)18$44-y
‰ZOC=201BC"
22.(w!12!)VA8C)HIAB,CŽJ%K!L:a,b,cC2DcosC4c="
(1)1IA%u;
‰Z°=“IB%Œ!”BO=&,1a%9"
•– ˆi—
1. D
i—Vsin^|-D^=|,
.3
..COS<2=
.
5
cos2a=2cos2a7-\---,
25
˜D
2. B
i—|ae(0,2],Sa+N/Ej],
I12)121122):.
Ž™
cos[a+()=cos[(a+š)+›=8œ+-L4ž+Ÿ ¡¢XWL£
I12J6I12y632326
˜B.
3. :B
i—sin373°cos7670-sin77°sin227°=sin(360°+13°)cos(720°+47°)-sin(90°-13°)-
sin(180°+47°)=sin13°cos470+cos13°sin47°=sin(13"+47°)=sin60"=¥˜B.
4 :A
i—cos240°sin30-sin(-60)sin120°+8”4k41
'71+tan75
X~Y~+tan(75"-45")
1y/3
---F----
23
5. A
sina2sin2a1-cos2a
i—:tana=-------=----------------=-------------
cosa2sinacosasin2"
/sinf-+42sin2f-+4l-cosf-d-^l
tan§+0=3-=(42)12¨1+sin/
32Jcos(©)2sin(ª)cos«+dsB+¬COS0
|sin%(1+sinp)-cosp(\-cos2a)S1+sin"='_­_tan|4+4®
cosPsin2a142J
ae§w>"±²y=tanx³´(0,µ¶·¸¹Ž™c=+§º
2a-p=],˜A.
6. D
i—|2sina=1+26cosaS4sin2a-473sin2a+12cos2a=1
­lj2(1-cos2a)-4Gsin2a+6(1+cos2a)=1,4\/3sin2a-4cos2a=7
Ai4sin2cr4¼cos2a=1,sin(2a-½)=Z,˜D
22868:.
7. A
i—|¾"=60","=¿,0=6| ÀfÁS=4-7y,ºÂÃyÃiS
sin3sine4k4
2
1
sinB=4*//?<cAB

2023衡水名师原创数学专题卷8 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数26
  • 收藏数0 收藏
  • 顶次数0
  • 上传人cby201601
  • 文件大小2.36 MB
  • 时间2022-10-17
最近更新