该【初二数学下册知识点归纳 】是由【莫比乌斯】上传分享,文档一共【10】页,该文档可以免费在线阅读,需要了解更多关于【初二数学下册知识点归纳 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。初二数学下册数学知识点总结
第一章一元一次不等式和一元一次不等式组
※,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式.
¤:方程表示的是相等的关系;不等式表示的是不相等的关系.
※“翻译”不等式,正确理解“非负数”、“不小于”等数学术语.
非负数<===>大于等于0(≥0)<===>0和正数<===>不小于0
非正数<===>小于等于0(≤0)<===>0和负数<===>不大于0
※,并会灵活运用:
(1)不等式的两边加上(或减去)同一个整式,不等号的方向不变,即:
如果a>b,那么a+c>b+c,a-c>b-c.
(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,即
如果a>b,并且c>0,那么ac>bc,.
(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,即:
如果a>b,并且c<0,那么ac<bc,
※:(a、b分别表示两个实数或整式)
一般地:
如果a>b,那么a-b是正数;反过来,如果a-b是正数,那么a>b;
如果a=b,那么a-b等于0;反过来,如果a-b等于0,那么a=b;
如果a<b,那么a-b是负数;反过来,如果a-b是正数,那么a<b;
即:
a>b<===>a-b>0
a=b<===>a-b=0
a<b<===>a-b<0
(由此可见,要比较两个实数的大小,只要考察它们的差就可以了.
:
※,叫做不等式的解;一个不等式的所有解,组成这个不等式的解集;求不等式的解集的过程,叫做解不等式.
※,一般是在某个范围内的所有数,与方程的解不同.
¤:
用数轴表示不等式的解集时,要确定边界和方向:
①边界:有等号的是实心圆圈,无等号的是空心圆圈;
②方向:大向右,小向左
:
※,且含未知数的式子是整式,.
※,特别要注意,当不等式两边都乘以一个负数时,不等号要改变方向.
※:
①去分母;
②去括号;
③移项;
④合并同类项;
⑤系数化为1(不等号的改变问题)
※>b(或ax<b)
①当a>0时,解为;
②当a=0时,且b<0,则x取一切实数;
当a=0时,且b≥0,则无解;
③当a<0时,解为;
¤(利用不等式解决实际问题)
列不等式解应用题基本步骤与列方程解应用题相类似,即:
①审:认真审题,找出题中的不等关系,要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“不小于”等含义;
②设:设出适当的未知数;
③列:根据题中的不等关系,列出不等式;
④解:解出所列的不等式的解集;
⑤答:写出答案,并检验答案是否符合题意.
※:由含有一个相同未知数的几个一元一次不等式组成的不等式组,叫做一元一次不等式组.
※,就说这个不等式组无解.
几个不等式解集的公共部分,通常是利用数轴来确定.
※:
(1)分别求出不等式组中各个不等式的解集;
(2)利用数轴求出这些解集的公共部分,即这个不等式组的解集.
两个一元一次不等式组的解集的四种情况(a、b为实数,且a<b)
一元一次不等式解集图示叙述语言表达
x>b两大取较大
x>a两小取小
a<x<b大小交叉中间找无解在大小分离没有解(是空集)
第二章分解因式
※,这种变形叫做把这个多项式分解因式.
※.
因式分解与整式乘法的区别和联系:
(1)整式乘法是把几个整式相乘,化为一个多项式;
(2)因式分解是把一个多项式化为几个因式相乘.
※,那么就可以把这个公因式提出来,.
如:
※:
(1)因式分解的最后结果应当是“积”;
(2)公因式可能是单项式,也可能是多项式;
(3)提公因式法的理论依据是乘法对加法的分配律,即:
※:
(1)注意项的符号与幂指数是否搞错;
(2)公因式是否提“干净”;
(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉.
※,.
※:
(1)平方差公式:
(2)完全平方公式:
¤:
.
※:
(1)平方差公式:
①应是二项式或视作二项式的多项式;
②二项式的每项(不含符号)都是一个单项式(或多项式)的平方;
③二项是异号.
(2)完全平方公式:
①应是三项式;
②其中两项同号,且各为一整式的平方;
③还有一项可正负,且它是前两项幂的底数乘积的2倍.
※:
(1)先看各项有没有公因式,若有,则先提取公因式;
(2)再看能否使用公式法;
(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;
(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;
(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.
:
※:利用分组来分解因式的方法叫做分组分解法.
如:
※:
分组分解法的关键是如何分组,要尝试通过分组后是否有公因式可提,并且可继续分解,分组后是否可利用公式法继续分解因式.
※:分组时要注意符号的变化.
:
※,将a和c分别分解成两个因数的乘积,,,且满足,往往写成的形式,将二次三项式进行分解.
如:
※:
※:
(1)理解:把分解因式时,如果常数项q是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p的符号相同.
(2)如果常数项q是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数p的符号相同,对于分解的两个因数,还要看它们的和是不是等于一次项系数p.
※:
(1)十字相乘法在对系数分解时易出错;
(2)分解的结果与原式不等,这时通常采用多项式乘法还原后检验分解的是否正确.
第三章分式
※,出现了分数;类似地,当两个整式不能整除时,就出现了分式.
整式A除以整式B,,那么称为分式,对于任意一个分式,分母都不能为零.
※,即有:
※,常要进行约分和通分,其主要依据是分数的基本性质:
分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.
※、分母有公因式时,可以运用分式的基本性质,把这个分式的分子、分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分.
※,用分子的积做积的分子,分母的积做积的分母;分式除以以分式,把除式的分子、分母颠倒位置后,与被除式相乘.
即:,
※,把分子、分母分别乘方.
即:
逆向运用,当n为整数时,仍然有成立.
※,叫做最简分式.
※,,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.
※:
分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减.
(1)同分母的分式相加减,分母不变,把分子相加减;
上述法则用式子表示是:
(2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;
上述法则用式子表示是:
※:
通分的关键是确定最简分母,其方法如下:最简公分母的系数,取各分母系数的最小公倍数;最简公分母的字母,取各分母所有字母的最高次幂的积,如果分母是多项式,则首先对多项式进行因式分解.
※:
①在方程的两边都乘最简公分母,约去分母,化成整式方程;
②解这个整式方程;
③把整式方程的根代入最简公分母,看结果是不是零,使最简公母为零的根是原方程的增根,必须舍去.
※:
①审清题意;
②设未知数;
③根据题意找相等关系,列出(分式)方程;
④解方程,并验根;
⑤写出答案.
第四章相似图形
※,CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n,或写成.
※、b、c、d中,如果a与b的比等于c与d的比,即,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.
※:
①a:b=k,说明a是b的k倍;
②由于线段a、b的长度都是正数,所以k是正数;
③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致;
④除了a=b之外,a:b≠b:a,与互为倒数;
⑤比例的基本性质:若,则ad=bc;若ad=bc,则
※,点C把线段AB分成两条线段AC和BC,如果,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.
※、最令人赏心悦目的点.
¤,形状相同的图形称为相似图形.
※、.
※,最为简简单的就是相似三角形.
※、.
※,:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.
※,对应中线的比与对应角平分线的比都等于相似比.
※.
※.
※:
一般三角形直角三角形
基本定理:平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形与原三角形相似.
①两角对应相等;
②两边对应成比例,且夹角相等;
③三边对应成比例.①一个锐角对应相等;
②两条边对应成比例:
;
.
※:三条平行线截两条直线,所得的对应线段成比例.
如图2,l1//l2//l3,则.
※(或两边的延长线)相交,所构成的三角形与原三角形相似.
※相似多边形的周长等于相似比;面积比等于相似比的平方.
※,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形;这个点叫做位似中心;这时的相似比又称为位似比.
※.
◎:
①变换后的图形,不仅与原图相似,而且对应顶点的连线相交于一点,.
②一个图形经过位似变换后得到另一个图形,这两个图形就叫做位似形.
③利用位似的方法,可以把一个图形放大或缩小.
第五章数据的收集与处理
※;
把组成总体的每一个考察对象叫做个体;
从总体中取出的一部分个体叫做这个总体的一个样本.
※;
为一特定目的而对部分考察对象作的调查叫做抽样调查.
※:调查的范围小、,它得到的只是估计值.
而估计值是否接近实际情况还取决于样本选得是否有代表性.
第六章证明(一)
※,能明确指出概念含义或特征的句子,称为定义.
,例如“一些”、“大概”、“差不多”等不能在定义中出现.
※.
正确的命题称为真命题,错误的命题称为假命题.
※,并且把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理.
※,用逻辑推理的方法判断它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理.
¤、定义以及公理、定理等,经过逻辑推理,来判断一个命题是否正确,这样的推理过程叫做证明.
※:同位角相等,两直线平行.(并由此得到平行的判定定理)
※:同旁内互补,两直线平行.
※:同错角相等,两直线平行.
※:两直线平行,同位角相等;
※:两直线平行,内错角相等;
※:两直线平行,同旁内角互补.
※:三角形三个内角的和等于180°
¤
¤
¤
※:
推论1:三角形的一个外角等于和它不相邻的两个内角的和;
推论2:三角形的一个外角大于任何一个和它不相邻的内角.
初二数学下册知识点归纳 来自淘豆网m.daumloan.com转载请标明出处.