下载此文档

人教版初二下册数学知识点.doc


文档分类:中学教育 | 页数:约18页 举报非法文档有奖
1/18
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/18 下载此文档
文档列表 文档介绍
该【人教版初二下册数学知识点 】是由【莫比乌斯】上传分享,文档一共【18】页,该文档可以免费在线阅读,需要了解更多关于【人教版初二下册数学知识点 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。八年级数学(下册)知识点总结
二次根式
【知识回顾】
:式子(≥0)叫做二次根式。
:必须同时满足下列条件:
⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。
:
二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
(>0)
(<0)
0(=0);
:
(1)()2=(≥0);(2)
:
(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.
(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.
(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.
=·(a≥0,b≥0);(b≥0,a>0).
(4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.
【典型例题】
1、概念与性质
例1下列各式1),
其中是二次根式的是___1345______(填序号).
例2、求下列二次根式中字母的取值范围
(1);(2)
例3、在根式1),最简二次根式是(C)
)2))4))3))4)
例4、已知:
例5、(2009龙岩)已知数a,b,若=b-a,则(B  )
>b       <b  ≥b          ≤b
2、二次根式的化简与计算
,得(  )
A.;  B.-;     C.-;     D.
(a-b)化成最简二次根式
例3、计算:
例4、先化简,再求值:
,其中a=,b=.
例5、如图,实数、在数轴上的位置,化简:
4、比较数值
(1)、根式变形法
当时,①如果,则;②如果,则。
例1、比较与的大小。
(2)、平方法
当时,①如果,则;②如果,则。
例2、比较与的大小。
(3)、分母有理化法
通过分母有理化,利用分子的大小来比较。
例3、比较与的大小。
(4)、分子有理化法
通过分子有理化,利用分母的大小来比较。
例4、比较与的大小。
(5)、倒数法
例5、比较与的大小。
(6)、媒介传递法
适当选择介于两个数之间的媒介值,利用传递性进行比较。
例6、比较与的大小。
(7)、作差比较法
在对两数比较大小时,经常运用如下性质:
①;②
例7、比较与的大小。
(8)、求商比较法
它运用如下性质:当a>0,b>0时,则:
①;②
例8、比较与的大小。
5、规律性问题
:
 ,验证:;
验证:.
(1)按照上述两个等式及其验证过程的基本思路,猜想的变形结果,并进行验证;
(2)针对上述各式反映的规律,写出用n(n≥2,且n是整数)表示的等式,并给出验证过程.
勾股定理
:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。
:如果三角形三边长a,b,c满足a2+b2=c2。,那么这个三角形是直角三角形。

我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)

(1)、直角三角形的两个锐角互余。可表示如下:∠C=90°∠A+∠B=90°
(2)、在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30°
可表示如下:BC=AB
∠C=90°
(3)、直角三角形斜边上的中线等于斜边的一半
∠ACB=90°
可表示如下:CD=AB=BD=AD
D为AB的中点
5、摄影定理
在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项
∠ACB=90°
CD⊥AB
6、常用关系式
由三角形面积公式可得:ABCD=ACBC
7、直角三角形的判定
1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、勾股定理的逆定理:如果三角形的三边长a,b,c有关系,那么这个三角形是直角三角形。
8、命题、定理、证明
1、命题的概念
判断一件事情的语句,叫做命题。
理解:命题的定义包括两层含义:
(1)命题必须是个完整的句子;
(2)这个句子必须对某件事情做出判断。
2、命题的分类(按正确、错误与否分)
真命题(正确的命题)
命题
假命题(错误的命题)
所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。
所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。
3、公理
人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。
4、定理
用推理的方法判断为正确的命题叫做定理。
5、证明
判断一个命题的正确性的推理过程叫做证明。
6、证明的一般步骤
(1)根据题意,画出图形。
(2)根据题设、结论、结合图形,写出已知、求证。
(3)经过分析,找出由已知推出求证的途径,写出证明过程。
9、三角形中的中位线
连接三角形两边中点的线段叫做三角形的中位线。
(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。
(2)要会区别三角形中线与中位线。
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
三角形中位线定理的作用:
位置关系:可以证明两条直线平行。
数量关系:可以证明线段的倍分关系。
常用结论:任一个三角形都有三条中位线,由此有:
结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。
结论2:三条中位线将原三角形分割成四个全等的三角形。
结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。
结论4:三角形一条中线和与它相交的中位线互相平分。
结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。
10数学口诀.
平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
完全平方公式:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
四边形
:
(1)四边形的内角和等于360°;
(2)四边形的外角和等于360°.
:
(1)n边形的内角和等于(n-2)180°;
(2)任意多边形的外角和等于360°.
:
因为ABCD是平行四边形Þ
:
.
:
因为ABCD是矩形Þ

:
Þ四边形ABCD是矩形.
:
因为ABCD是菱形
Þ
:
Þ四边形四边形ABCD是菱形.
:
因为ABCD是正方形
Þ
(1)(2)(3)
:
Þ四边形ABCD是正方形.
(3)∵ABCD是矩形
又∵AD=AB
∴四边形ABCD是正方形
:
因为ABCD是等腰梯形Þ
:
Þ四边形ABCD是等腰梯形
(3)∵ABCD是梯形且AD∥BC
∵AC=BD
∴ABCD四边形是等腰梯形
:
三角形的中位线平行第三边,并且等于它的一半.
:
梯形的中位线平行于两底,并且等于两底和的一半.
一基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线.
二定理:中心对称的有关定理
※.
※,对称点连线都经过对称中心,并且被对称中心平分.
※,并且被这一点平分,那么这两个图形关于这一点对称.
三公式:
=ab=ch.(a、b为菱形的对角线,c为菱形的边长,h为c边上的高)
=,h为a上的高)
=(a+b)h=Lh.(a、b为梯形的底,h为梯形的高,L为梯形的中位线)
四常识:
※,则对角线条数公式是:.
“出一对全等,一对相似”.
:平行四边形、矩形、菱形、正方形的从属关系.
,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形……;仅是中心对称图形的有:平行四边形……;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆…….注意:线段有两条对称轴.
一次函数
、变量:
在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量。
二、函数的概念:
函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.
三、函数中自变量取值范围的求法:
(1)用整式表示的函数,自变量的取值范围是全体实数。
(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。
(3)用寄次根式表示的函数,自变量的取值范围是全体实数。
用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。
(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。
(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。
四、函数图象的定义:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象.
五、用描点法画函数的图象的一般步骤
1、列表(表中给出一些自变量的值及其对应的函数值。)
注意:列表时自变量由小到大,相差一样,有时需对称。
2、描点:(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
3、连线:(按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来)。
六、函数有三种表示形式:
(1)列表法(2)图像法(3)解析式法
七、正比例函数与一次函数的概念:
一般地,形如y=kx(k为常数,且k≠0)。
一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做一次函数.
当b=0时,y=kx+b即为y=kx,所以正比例函数,是一次函数的特例.
八、正比例函数的图象与性质:
(1)图象:正比例函数y=kx(k是常数,k≠0))的图象是经过原点的一条直线,我们称它为直线y=kx。
(2)性质:当k>0时,直线y=kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k<0时,直线y=kx经过二,四象限,从左向右下降,即随着x的增大y反而减小。
九、求函数解析式的方法:
待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法。
一次函数与一元一次方程:从“数”的角度看x为何值时函数y=ax+b的值为0.
求ax+b=0(a,b是常数,a≠0)的解,从“形”的角度看,求直线y=ax+b与x轴交点的横坐标
一次函数与一元一次不等式:
解不等式ax+b>0(a,b是常数,a≠0).从“数”的角度看,x为何值时函数y=ax+b的值大于0.
+b>0(a,b是常数,a≠0).从“形”的角度看,求直线y=ax+b在x轴上方的部分(射线)所对应的的横坐标的取值范围.
十、一次函数与正比例函数的图象与性质
一 次 函 数

人教版初二下册数学知识点 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数18
  • 收藏数0 收藏
  • 顶次数0
  • 上传人莫比乌斯
  • 文件大小416 KB
  • 时间2022-10-27
最近更新