下载此文档

高中数学排列组合知识点.doc


文档分类:中学教育 | 页数:约3页 举报非法文档有奖
1/3
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/3 下载此文档
文档列表 文档介绍
该【高中数学排列组合知识点 】是由【莫比乌斯】上传分享,文档一共【3】页,该文档可以免费在线阅读,需要了解更多关于【高中数学排列组合知识点 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。排列组合
复习巩固
(加法原理)
完成一件事,有类办法,在第1类办法中有种不同的方法,在第2类办法中有种不同的方法,…,在第类办法中有种不同的方法,那么完成这件事共有:种不同的方法.
(乘法原理)
完成一件事,需要分成个步骤,做第1步有种不同的方法,做第2步有种不同的方法,…,做第步有种不同的方法,那么完成这件事共有:种不同的方法.

分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.

,1,2,3,4,5可以组成多少个没有重复数字五位奇数.
解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.
先排末位共有
然后排首位共有
最后排其它位置共有
由分步计数原理得
练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?

,其中甲乙相邻且丙丁相邻,共有多少种不同的排法.
解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有种不同的排法

,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?
解:分两步进行第一步排2个相声和3个独唱共有种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种不同的方法,由分步计数原理,节目的不同顺序共有种

,其中甲乙丙3人顺序一定共有多少不同的排法
解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:
(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有种方法,其余的三个位置甲乙丙共有1种坐法,则共有种方法。

,共有多少种不同的分法
解:完成此事共分六步:,由分步计数原理共有种不同的排法

,共有多少种坐法?
解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人并从此位置把圆形展成直线其余7人共有(8-1)!种排法即!

,每排4人,其中甲乙在前排,丙在后排,共有多少排法
解:8人排前后两排,相当于8人坐8把椅子,,再排后4个位置上的特殊元素丙有种,其余的5人在5个位置上任意排列有种,则共有种

,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.
解:(包含一个复合元素)装入4个不同的盒内有种方法,根据分步计数原理装球的方法共有

,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多少个?
解:把1,5,2,4当作一个小集团与3排队共有种排法,再排小集团内部共有种排法,由分步计数原理共有种排法.

,分给7个班,每班至少一个,有多少种分配方案?
解:因为10个名额没有差别,把它们排成一排。相邻名额之间形成9个空隙。在9个空档中选6个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有种分法。

,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的
取法有多少种?
解:这问题中如果直接求不小于10的偶数很困难,可用总体淘汰法。这十个数字中有5个偶数5个奇数,所取的三个数含有3个偶数的取法有,只含有1个偶数的取法有,和为偶数的取法共有。再淘汰和小于10的偶数共9种,符合条件的取法共有

,每堆2本共有多少分法?
解:分三步取书得种方法,但这里出现重复计数的现象,不妨记6本书为ABCDEF,若第一步取AB,第二步取CD,第三步取EF该分法记为(AB,CD,EF),则中还有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(EF,CD,AB),(EF,AB,CD)共有种取法,而这些分法仅是(AB,CD,EF)一种分法,故共有种分法。

,其中8人能能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目,有多少选派方法
解:10演员中有5人只会唱歌,2人只会跳舞3人为全能演员。选上唱歌人员为标准进行研究只会唱的5人中没有人选上唱歌人员共有种,只会唱的5人中只有1人选上唱歌人员种,只会唱的5人中只有2人选上唱歌人员有种,由分类计数原理共有种。

,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种?
解:把此问题当作一个排队模型在6盏亮灯的5个空隙中插入3个不亮的灯有种

,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法
解:从5个球中取出2个与盒子对号有种还剩下3球3盒序号不能对应,利用实际操作法,如果剩下3,4,5号球,3,4,5号盒3号球装4号盒时,则4,5号球有只有1种装法,同理3号球装5号盒时,4,5号球有也只有1种装法,由分步计数原理有种


分析:先把30030分解成质因数的乘积形式30030=2×3×5×7×11×13,依题意可知偶因数必先取2,再从其余5个因数中任取若干个组成乘积,所有的偶因数为:
练习:正方体的8个顶点可连成多少对异面直线
解:我们先从8个顶点中任取4个顶点构成四体共有体共,每个四面体有3对异面直线,正方体中的8个顶点可连成对异面直线

×5方阵,现从中选3人,要求3人不在同一行也不在同一列,不同的选法有多少种?
解:将这个问题退化成9人排成3×3方阵,现从中选3人,要求3人不在同一行也不在同一列,,把这人所在的行列都划掉,×3方队中选3人的方法有种。再从5×5方阵选出3××5方队中选取3行3列有选法所以从5×5方阵选不在同一行也不在同一列的3人有选法。

,1,2,3,4,5六个数字可以组成多少个没有重复的比324105大的数?
解:

,由甲开始发球,并作为第一次传球,经过次传求后,球仍回到甲的手中,则不同的传球方式有______

、黄、兰色的球各5只,分别标有A、B、C、D、E五个字母,现从中取5只,要求各字母均有且三色齐备,则共有多少种不同的取法

1
1
1
2
2
3

1
2
3
1
2
1

3
2
1
2
1
1
取法
解:
二十一:住店法策略
解决“允许重复排列问题”要注意区分两类元素:一类元素可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,再利用乘法原理直接求解.
,每项冠军只能由一人获得,获得冠军的可能的种数有.
分析:因同一学生可以同时夺得n项冠军,故学生可重复排列,将七名学生看作7家“店”,五项冠军看作5名“客”,每个“客”有7种住宿法,由乘法原理得7种.

高中数学排列组合知识点 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数3
  • 收藏数0 收藏
  • 顶次数0
  • 上传人莫比乌斯
  • 文件大小239 KB
  • 时间2022-10-27
最近更新