arXiv:hep-th/9902178v1 24 Feb 1999
nttt eFıiaT´rc,Uiesdd saulPaul F´ısica Estadual Te´orica, de Universidade Instituto
3 2 1
oeo h uesrn BRST Superstring the on Note A
-al ******@ e-mail: ******@ e-mail: ******@ e-mail:
u apoa15 10-0,Sa al,S,Brasil SP, S˜ao Paulo, 01405-900, 145, Pamplona Rua
e
hspoie rva ro that proof trivial a provides This
−
R
ewieteBS prtro h = uesrn as superstring N=1 the of operator BRST the write We
(
2
1
πi
H
zγ dz
2
b
)
e
R
where
ahnBerkovits Nathan
sad Chand´ıaOsvaldo
Operator
o´ .Acosta Jos´e N.
eray 1999 February,
γ
and
Abstract
and
b
Q
r ue-eaaeeiainghosts. super-reparameterization are
snilpotent. is
1
,
2
3
,
IFT-
Q
=
ista
1 Introduction
Superstring theory in ten dimensions is a critical N = 1 superconformal
theory. It can be quantized using a nilpotent BRST operator
1 1 1
Q = dz [c(T + T ) + γ(G + G )] (1)
2πi I m 2 g m 2 g
where [Tm, Gm] are the c = 15 N=1 superconformal generators and [Tg, Gg]
are the c = −15 N=1 superconformal generators constructed from a pair
of fermionic ghosts [b, c] and a pair of bosonic ghosts [β, γ]. Physical states
are described by vertex operators in the cohomology of Q and, in order to
construct vertex operators for the spacetime fermions, it is convenient to
fermionize th
硼钢的特性 来自淘豆网m.daumloan.com转载请标明出处.