该【施工测量的基本工作 】是由【君君】上传分享,文档一共【17】页,该文档可以免费在线阅读,需要了解更多关于【施工测量的基本工作 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。Revisedat2pmonDecember25,2020.
施工测量的基本工作
4施工测量
4-1施工测量的基本工作
4-1-1基本原则
建筑施工测量是研究利用各种测量仪器和工具对建筑场地上地面的位置进行度量和测定的科学,它的基本任务:
(1)对建筑施工场地的表面形状和尺寸按一定比例测绘成地形图。
(2)将图纸上已设计好的工程建筑物按设计要求测设到地面上,并用各种标志表示在现场。
(3)按设计的屋面标高、逐层引测。
4-1-2距离测量
根据不同的精度要求,距离测量有普通量距和精密量距两种方法。精密量距时所量长度一般都要加尺长、温度和高差三项改正数,有时必须考虑垂曲改正。丈量两已知点间的距离,使用的主要工具是钢卷尺,精度要求较低的量距工作,也可使用皮尺或测绳。
4-1-2-1普通量距
先用经纬仪或以目估进行定线。如地面平坦,可按整尺长度逐步丈量,直至最后量出两点间的距离。若地面起伏不平,可将尺子悬空并目估使其水平。以垂球或测钎对准地面点或向地面投点,测出其距离。地面坡度较大时,则可把一整尺段的距离分成几段丈量;也可沿斜坡丈量斜距,再用水准仪测出尺端间的高差,然后按式(4-2
)求出高差改正数,将倾斜距离改化成水平距离。
如使用经检定的钢尺丈量距离,当其尺长改正数小于尺长的1/10000,可不考虑尺长改正。量距时的温度与钢尺检定时的标准温度(一般规定为20℃)相差不大时,也可不进行温度改正。
为了校核并提高精度,一般要求进行往返丈量。取平均值作为结果,量距精度以往测与返测距离值的差数与平均值之比表示。在平坦地区应达到1/3000,在起伏变化较大地区要求达到1/2000,在丈量困难地区不得大于1/1000。
4-1-2-2精密量距
先用经纬仪进行直线方向,清除视线上的障碍,然后沿视线方向按每整尺段(即钢尺检定时的整长)设置传距桩。最好在桩顶面钉上白铁片,并画出十字线的标记。所使用之钢尺在开始量距前应先打开,使与空气接触,经10min后方可进行量距。前尺以弹簧秤施加与钢尺检定时相同的拉力,后尺则以厘米分划线对准桩顶标志,当钢尺达到稳定时,前尺对好桩顶标志,随即读数;随后后尺移动1~2cm分划线重新对准桩顶标志,再次读数;一般要求读出三组读数。读数时应估读到~,每次读数误差为~1mm。读数时应同时测定温度,温度计最好绑在钢尺上,以便反映出钢尺量距时的实际温度。
按整尺段丈量距离,当量至另一端点时,必剩一零尺段。零尺段的长度最好采用经过检定的专门用于丈量零尺段的补尺来量度。如无条件,可按整尺长度沿视线方向将尺的一端延长,对钢尺所施拉力仍与检定时相同,然后按上述方法读出零尺段的读数。但由于钢尺刻度不均匀误差的影响,用这种方法测量不足整尺长度的零段距离,其精度有所降低,但对全段距离的影响是有限的。
当全段距离量完之后,尺端要调头,读数员互换,按同法进行返测,往返丈量一次为一测回,一般应测量二测回以上。量距精度以两测回的差数与距离之比表示。使用普通钢尺进行精密量距,其相对误差一般可达1/50000以上。
4-1-2-3精密量距的几项改正数
用钢尺测量空间两点间的距离时,因钢尺本身有尺长误差(或刻划误差),在两点之间测量的长度不等于实际长度,此外因钢卷尺在两点之间无支托,使尺下挠引起垂曲误差,为使下挠垂曲小一些,需对钢尺施加一定的拉力,此拉力又势必使钢尺产生弹性变形,在尺端两桩高差为零的情况下,可列出钢尺尺长改正数理论公式的一般形式为:
ΔLi=ΔCi+ΔPi-ΔSi(4-1)
式中ΔLi——零尺段尺长改正数;
ΔCi——零尺段尺长误差(或刻划误差);
ΔSi——钢尺尺长垂曲改正数;
ΔPi——钢尺尺长拉力改正数。
钢尺尺长误差改正公式:
钢尺上的刻划和注字,表示钢尺名义长度,由于钢尺制造设备,工艺流程和控制技术的影响,会有尺长误差,为了保证量距的精度,应对钢尺作检定,求出尺长误差的改正数。
检定钢尺长度(水平状态)系在野外钢尺基线场标准长度上,每隔5m设一托桩,以比长方法,施以一定的检定压力,检定0~30m或0~50m刻划间的长度,由此可按通用公式计算出尺长误差的改正数:
ΔL平检=L基-L量(4-2)
式中ΔL平检——钢尺水平状态检定拉力P0、20℃时的尺长误差改正数;
L基——比尺长基线长度;
L量——钢尺量得的名义长度。
当钢尺尺长误差分布均匀或系统误差时,钢尺尺长误差与长度成比例关系,则零尺段尺长误差的改正公式为:
式中ΔCi——零尺段尺长误差改正数;
Li——零尺段长度;
L——整尺段长度。
所求得的尺长改正数亦可送有资质的单位去作检定。
钢尺的长度是随温度而变化的。钢的线胀系数α一般为~,为了简化计算工作,取α=。若量距时之温度t不等于钢尺检定时的标准温度t0(t0一般为20℃),则每一整尺段L的温度改正数ΔLt按下式计算
ΔLt=α(t-t0)L(4-3)
(高差改正)
设沿倾斜地面量得A、B两点之距离为L(图4-1),A、B两点之间的高差为h,为了将倾斜距离L改算为水平距L0,需要求出倾斜改正数ΔLh。
图4-1斜距改正示意
(4-4)
对上式一般只取用第一项,即可满足要求。如高差较大,所量斜距较短,则须计算第二项改正数。上式第二项为。故求得第一项数值后将其平方再除以2L,即得第二项之绝对值。
如果钢尺在检定时,尺间按一定距离设有水平托桩,或沿水平地面丈量,而在实际作业时不能按此条件量距,须悬空丈量,钢尺必然下垂,此时对所量距离必须进行垂曲改正。
垂曲改正数按下式计算:
(4-5)
式中W——钢尺每米重力(N/m);
L——尺段两端间的距离(m);
P——拉力(N)。
例如:L=28m,W=m,P=100N代入上式,则
钢尺长度在拉力作用下有微小的伸长,用它测量距离时,读得的“假读数”,必然小于真实读数,所以应在“假读数”上加拉力改正数,此改正数可用材料力学中虎克定律算出,而在弹性限度内,钢尺的弹性伸长与拉力的关系式为:
(4-6)
因钢尺尺长误差的改正数,已含有P0拉力的弹性伸长,则上式改为:
令
(4-7)
式中P——测量时的拉力;
P0——检定时的拉力;
Li——零尺段长度;
G——钢尺延伸系数。
通常,在实际测量距离时所使用的拉力,总是等于钢尺检定时所使用的拉力,因而不需进行拉力改正。
对于悬空状态下尺长方程式:
由式(4-8)、式(4-9)可知,当拉力跨距和钢尺各技术参数如W、F、E、α等为已知时,则可按上述理论公式求得相应的改正数,再取各项改正数的和计算,即得钢尺任意状态下尺长的实际长度。
应当指出,材质不同的钢尺,其弹性模量也不相同,从不同钢材的弹性模量和截面积计算出延伸系数。
目前JIS一级钢卷尺的各项技术参数列于表4-1。
钢尺技术参数表4-1
种类
厚×宽
(mm×mm)
截面积F
(mm2)
单位重量W
(g/m)
延伸系数G(1m/10N)
(mm)
弹性模量E
(×105N/mm2)
膨胀系数α
(×10-6/℃)
司底伦卷尺
*×10
*±1%
*±1%
宽面卷尺
*×13
*±1%
*±1%
韧性卷尺
*×6
*土%
*±1%
银白卷尺
*×13
*±1%
*±%
普通钢卷尺
×13
±%
±%
不锈钢卷尺
×13
±2%
±2%
普通钢带卷尺
×15
±1%
±1%
不锈钢带卷尺
×15
±2%
±2%
韧性不锈钢卷尺
×6
±%
±%
韧性碳钢卷尺
×6
±%
±%
注:带有*号的卷尺,其截面积不包括外面的尼龙涂层(是芯钢材实际尺寸),重量包括外面涂层与尼龙。
为了使用方便,我们编制了钢尺悬空和水平状态下尺长改正数表和温度改正数用表。为便于比较,我们编制本表依据是机械工业建厂测量手册中国产30m地球牌钢卷尺,尺端施用P0=100N拉力,尺身悬空无托桩,悬空检定整尺段钢尺Δ悬检为。
地球牌钢卷尺技术参数:F=;W=m;E=200000N/mm2;G=。理论公式采用式(4-9),改正用表见表4-2~表4-7。
根据公式绘制一曲线,见图4-2。横轴为不同长度li,纵轴为拉力Pi,使用时以长度li为引数,即可求得相应的拉力Pi,及其相应的尺长改正数Δli。
图4-2
Δt改正数表4-2
ΔC改正数表4-3
ΔP改正数表4-4
ΔS改正数表4-5
ΔC+ΔP-ΔS改正数(悬空)表4-6
ΔC+ΔP改正数(水平)表4-7
[例1]计算30m地球牌钢卷尺检定拉力为P0=100N,丈量施以P=150N时的尺长改正数(悬空)。由表4-3、表4-4、表4-5查得:
△C=;△P=;△S=
△l=△C+△P-△S=+-=
由表4-6直接查得:li=30m时的△l=。
[例2]计算在10m零尺段施以整尺段拉力的尺长改正数(悬空)
由表4-3、表4-4、表4-5查得
△Ci=;△Pi=;△Si=
△li=△Ci+△Pi一△Si=+-=
由表4-6直接查得li=10m时的△li=
[例3]计算零尺段li=15m的特定拉力和尺长改正数(悬空)
方法一由曲线图以15m为引数查得应施加特定拉力Pi=80N,相应的尺长改正数由图下方查得△l=。
方法二由实验公式计算施加拉力及尺长改正数为:
Pi=[×15+6(kg)]×10N≈80N
(1)悬空状态下尺长方程式的精度估算
依据误差传播定律,精度估算公式为:
式(4-10)、式(4-11)或等号第一项为钢尺尺长误差改正数中误差(检定);第二项为钢尺拉力改正数中误差;第三项为钢尺垂曲改正数中误差;第四项为钢尺温度改正数中误差。
式(4-12)和式(4-13)含意类同前述。
(2)水平状态尺长方程式的精度估算
同理,对式(4-10)的精度估算公式为:
为了进一步验证理论公式,我们选用了日制JIS一级钢卷尺作拟合精度试验,现将部分试验结果列于表4-8。
理论公式实际拟合精度表4-8
由表4-8可知,理论公式实际拟合精度是相当理想的。零尺段长度上拟合仅差,一般在左右。上述情况表明,我们在作精密量距时,可直接对尺长改正数或尺长方程式进行计算使用。
4-1-3已知角度的测设
测设已知角度时,只给出一个方向,按已知角值,在地面上测定另一方向。如图4-3,OA为已知方向,要在O点测设α角。为此,在O点设置经纬仪,以正镜测设α值得B'。为了消除仪器误差的影响,再以倒镜测设α角得B"。取B'B"之中得B1,则∠AOB1即为所设之角。
图4-3已知角度放样图
若要精确的测设α角度,则按上法定出∠AOB1之后,再用经纬仪测出∠AOB1之角值为α',α'与给定的α值之差为Δα(图4-4)。为了精确设置α角,过B1作OB1的垂线,并在垂线上量取B1B得B点,∠AOB即为精确测设的α角度。
图4-4精测已知角示意图
B1B按下式计算:
(4-17)
式中ρ=206265",即一个弧度的角,以秒计。
4-1-4建筑物细部点的平面位置的测设
放出一点的平面位置的方法很多,要根据控制网的形式及分布、放线的精度要求及施工现场的条件来选用。
4-1-4-1直角坐标法
当建筑场地的施工控制网为方格网或轴线网形式时,采用直角坐标法放线最为方便。如图4-5所示,G1、G2、G3、G4为方格网点,现在要在地面上测出一点A。为此,沿G2-G3边量取G2A',使G2A'等于A与G2横坐标之差Δx,然后在A'设置经纬仪测设G2-G3边的垂线,在垂线上量取A'A,使A'A等于A与G2纵坐标之差Δy,则A点即为所求。
图4-5直角坐标放线图
施工测量的基本工作 来自淘豆网m.daumloan.com转载请标明出处.