信用评分模型中的拒绝推断
[摘要] 申请评分模型是为了评估申请者是否有能力如期偿还贷款的模型,是信用评分模型的一大分支,应用于信用卡征信审核阶段。本文从产生原因入手,详细分析了申请评分中的一类特殊问题——拒绝推断,并采用实证分析的方式说明了扩张法是解决拒绝推断问题较好的方法。
[关键词] 信用卡申请评分拒绝推断扩张法 Logistic回归
一、拒绝推断问题的研究背景
申请信用评分是为了评估申请者的信用状况,是否有能力如期偿还贷款的模型。它应用于信用卡征信审核阶段,通过申请人填写的个人信息及征信局信息,可有效、快速地辨别和划分客户质量,根据评估结果决定对于哪些人授信,授信多少。相对于行为评分的事中信用风险控制和催收评分的事后信用风险控制,申请评分为银行信用卡业务提供事前信用风险控制。所以模型的目标是预测申请者违约的概率,通过与阈值的比较,确定是否应该批准其申请。
但是实际上在建模过程中,我们使用的仅仅是部分申请者的记录——已经被批准的申请者作为样本开发模型,因为我们能够观察到这部分客户的后续行为。但是我们无法获取那些被拒绝的申请者的未来行为,也就无法准确判断他们究竟是好客户还是坏客户。对比而言,模型的应用对象将是包括拒绝和批准的全部客户。这就导致了使用部分数据,但是为估计总体而建立的信用评分模型存在参数估计的偏误,相关的研究也表明了这一点。
拒绝推断(Reject Inference),即对于建模总体中被拒绝的客户样本如何处理,是建立申请评分模型时特有的问题。如果我们能够顺利运用某些方法成功地推断出被拒绝的客户的信用表现(即是好客户还是坏客户),那么我们就得到一个较完整的建模总体和建模样本。
二、拒绝推断的方法
拒绝推断并不能解决所有样本偏差的问题。在经常改变授信政策的情况下,总会发生样本偏差的问题,只有通过积累数据来调整模型。在一致的授信政策下,如果模型总是被应用在固定的政策拒绝之后,开发模型的样本与使用模型的样本是一致的,这时无需进行拒绝推断;或者在高批核率或低坏账率时,被拒客户可以认定为坏客户,并且由于其样本量小,可忽略其对样本偏差的影响,无需考虑拒绝推断。在征信局数据完备的情况下,可以利用征信局数据或者通过其他途径补充被拒绝客户表现数据,如购买其他银行数据,也可以不考虑拒绝推断。
如果以上情形均不满足,模型开发中必须要考虑拒绝推断问题。
解决样本选择偏差的最直接有效的方法就是随机抽取未被授信的客户,对其进行授信,观察未来表现。对于这部分客户加以一定的权重与那些原本被授信的客户合起来作为模型开发的样本。
但是这种方法在现实中很难被银行的风险管理部门所接受,因为未被授信的客户一般被认为存在拖欠行为的可能性较大,对这部分客户进行授信,风险也往往较高,易带来损失。
扩张法(Augmentation)又称加权法(Re-Weighting),假设被拒绝的申请者行为模式与被授信的申请者行为模式相似,其基本思想是加权被授信的申请者,使得被授信的申请者能够代表被拒绝的申请者的行为。
该方法分为两个阶段。第一阶段,建立一个拒绝/批准模型,然后假设相近拒绝/批准概率的客户具有近似的风险特征, 因此考虑将拒绝/批准概率分成若干段,每段的好坏账户能代表该段内的被拒客户的特征,
信用评分模型中的拒绝推断 来自淘豆网m.daumloan.com转载请标明出处.