第十二章排队论
基本概念
输入过程和服务时间分布
泊松输入——指数服务排队模型
其他模型选介
排队系统的优化目标与最优化问题
本章内容重点
1
排队论(Queuing Theory),又称随机服务系统理论(Random Service System Theory),是一门研究拥挤现象(排队、等待)的科学。具体地说,它是在研究各种排队系统概率规律性的基础上,解决相应排队系统的最优设计和最优控制问题。
前言
2
排队是我们在日常生活和生产中经常遇到的现象。例如,上、下班搭乘公共汽车;顾客到商店购买物品;病员到医院看病;旅客到售票处购买车票;学生去食堂就餐等就常常出现排队和等待现象。除了上述有形的排队之外,还有大量的所谓“无形”排队现象,如几个顾客打电话到出租汽车站要求派车,如果出租汽车站无足够车辆、则部分顾客只得在各自的要车处等待,他们分散在不同地方,却形成了一个无形队列在等待派车。排队的不一定是人,也可以是物:
前言
3
例如,通讯卫星与地面若干待传递的信息;生产线上的原料、半成品等待加工;因故障停止运转的机器等待工人修理;码头的船只等待装卸货物;要降落的飞机因跑道不空而在空中盘旋等等。
前言
4
显然,上述各种问题虽互不相同,但却都有要求得到某种服务的人或物和提供服务的人或机构。排队论里把要求服务的对象统称为“顾客”,而把提供服务的人或机构称为“服务台”或“服务员”。不同的顾客与服务组成了各式各样的服务系统。顾客为了得到某种服务而到达系统、若不能立即获得服务而又允许排队等待,则加入等待队伍,待获得服务后离开系统,见图12-1至图12-5。
前言
5
不同的顾客与服务组成了各式各样的服务系统。顾客为了得到某种服务而到达系统、若不能立即获得服务而又允许排队等待,则加入等待队伍,待获得服务后离开系统,见图12-1至图12-5。
图12-1 单服务台排队系统
前言
6
图12-2 单队列——S个服务台并联的排队系统
图12-3 S个队列——S个服务台的并联排队系统
前言
7
图12-4 单队——多个服务台的串联排队系统
图12-5 多队——多服务台混联、网络系统
前言
8
图12-6 随机服务系统
前言
一般的排队系统,都可由下面图12-6加以描述。
9
通常称由图12-6表示的系统为一随机聚散服务系统,任一排队系统都是一个随机聚散服务系统。这里,“聚”表示顾客的到达,“散”表示顾客的离去。所谓随机性则是排队系统的一个普遍特点,是指顾客的到达情况(如相继到达时间间隔)与每个顾客接受服务的时间往往是事先无法确切知道的,或者说是随机的。一般来说,排队论所研究的排队系统中,顾客到来的时刻和服务台提供服务的时间长短都是随机的,因此这样的服务系统被称为随机服务系统。
前言
10
第十二章 排队论.ppt 来自淘豆网m.daumloan.com转载请标明出处.