下载此文档

阈值分割.doc


文档分类:IT计算机 | 页数:约4页 举报非法文档有奖
1/4
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/4 下载此文档
文档列表 文档介绍
阈值将原图象分成前景,背景两个图象。
前景:用n1, csum, m1来表示在当前阈值下的前景的点数,质量矩,平均灰度
后景:用n2, sum-csum, m2来表示在当前阈值下的背景的点数,质量矩,平均灰度
当取最佳阈值时,背景应该与前景差别最大,关键在于如何选择衡量差别的标准
而在otsu算法中这个衡量差别的标准就是最大类间方差(英文简称otsu,这也就是这个算法名字的来源)
在本程序中类间方差用sb表示,最大类间方差用fmax
关于最大类间方差法(otsu)的性能:
类间方差法对噪音和目标大小十分敏感,它仅对类间方差为单峰的图像产生较好的分割效果。
当目标与背景的大小比例悬殊时,类间方差准则函数可能呈现双峰或多峰,此时效果不好,但是类间方差法是用时最少的。
最大最大类间方差法(otsu)的公式推导:
记t为前景与背景的分割阈值,前景点数占图像比例为w0, 平均灰度为u0;背景点数占图像比例为w1,平均灰度为u1。
则图像的总平均灰度为:u=w0*u0+w1*u1。
前景和背景图象的方差:g=w0*(u0-u)*(u0-u)+w1*(u1-u)*(u1-u)=w0*w1*(u0-u1)*(u0-u1),此公式为方差公式,可参照概率论课本
上面的g的公式也就是下面程序中的sb的表达式
当方差g最大时,可以认为此时前景和背景差异最大,也就是此时的灰度是最佳阈值

unsafe public int GetThreshValue(Bitmap image)
{
BitmapData bd = (new Rectangle(0, 0, , ), , );
byte* pt = (byte*);
int[] pixelNum = new int[256]; //图象直方图,共256个点
byte color;
byte* pline;
int n, n1, n2;
int total; //total为总和,累计值
double m1, m2, sum, csum, fmax, sb; //sb为类间方差,fmax存储最大方差值
int k, t, q;
int threshValue = 1; // 阈值
int step = 1;
switch ()
{
case :
step = 3;
break;
case :
step = 4;
break;
case :
step = 1;
break;
}
//生成直方图
for (int i = 0; i < ; i++)
{
pline = pt + i * ;
for (int j = 0; j < ;

阈值分割 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数4
  • 收藏数0 收藏
  • 顶次数0
  • 上传人rjmy2261
  • 文件大小41 KB
  • 时间2018-01-11