初二数学知识点总结
上册知识点:
第一章一次函数
1 函数的定义,函数的定义域、值域、表达式,函数的图像
2 一次函数和正比例函数,及其表达式、增减性、图像
3 从函数的观点看方程、方程组和不等式
如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。
形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。
形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数。正比例函数是一种特殊的一次函数。当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
一、.常量、变量
在一个变化过程中,数值发生变化的量叫做变量,数值始终不变的量叫做常量。
二、函数的概念
函数的定义:一般的,在一个变化过程中如有两个变量x与y,并且对于x的每一个确定值,y都有唯一确定的值与其对应,那么就说x是自变量,y是x的函数.
三、函数中自变量取值范围的求法
(1)用整式表示的函数,自变量的取值范围是全体实数。
(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。
(3)用奇次根式表示的函数,自变量的取值范围是全体实数。
用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。
(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。
(5)对于与实际问题有关系的,自变量的取值范围应使实际问题有意义。
四、函数图象的定义
一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象。
五、用描点法画函数的图象的一般步骤
1、列表:表中给出一些自变量的值及其对应的函数值。
注意:列表时自变量由小到大,相差一样,有时需对称。
2、描点:在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
3、连线:按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来。
六、函数有三种表示形式
(1)列表法(2)图像法(3)解析式法
七、正比例函数与一次函数的概念:
一般地,形如y=kx(k为常数,且k≠0)的函数叫做正比例函数,其中k叫做比例系数。
一般地,形如y=kx+b (k,b为常数,且k≠0)的函数叫做一次函数。.
当b =0 时,y=kx+b 即为 y=kx,所以正比例函数是一次函数的特例.。
八、正比例函数的图象与性质
图象:正比例函数y= kx (k 是常数,k≠0) 的图象是经过原点的一条直线,称之为直线y= kx 。
性质:当k>0时,直线y= kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k<0时,直线y= kx经过二,四象限,从左向右下降,即随着 x的增大y反而减小。
九、求函数解析式的方法:
待定系数法:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法。
1、一次函数与一元一次方程:从“数”的角度看x为何值时函数y= ax+b的值为0.
2、求ax+b=0(a, b是常数,a≠0)的解,从“形”的角度看,求直线y= ax+b与 x 轴交点的横坐标
3、一次函数与一元一次不等式:
解不等式ax+b>0(a,b是常数,a≠0) .从“数”的角度看,x为何值时函数y= ax+b的值大于0。
4、解不等式ax+b>0(a,b是常数,a≠0) .从“形”的角度看,求直线y= ax+b在 x 轴上方的部分(射线)所对应的的横坐标的取值范围。
十、一次函数与正比例函数的图象与性质
一次函数
概念
如果y=kx+b(k、b是常数,k≠0),那么y叫x的一次函数,当b=0时,一次函数y=kx(k≠0)也叫正比例函数。
图像
一条直线
性质
k>0时,y随x的增大(或减小)而增大(或减小);
k<0时,y随x的增大(或减小)而减小(或增大).
直线y=kx+b(k≠0)的位置与k、b符号之间的关系.
(1)k>0,b>0图像经过一、二、三象限;
(2)k>0,b<0图像经过一、三、四象限;
(3)k>0,b=0 图像经过一、三象限;
(4)k<0,b>0图像经过一、二、四象限;
(5)k<0,b<0图像经过二、三、四象限;
(6)k<0,b=0图像经过二、四象限。
一次函数表达式的确定
求一次函数y=kx+b(k、b是常数,k≠0)时,需要由两个点来确定;求正比例函数y=kx(k≠0)时,只需一个点即可.。
十一、一次函数与二元一次方程组
解方程组
从“数”的角度看,自变量(x)为何值时两个函数的值相等并
求出这个函数值。
解方程组从“形”的角度看,确定两直线交
初二数学知识点总结 来自淘豆网m.daumloan.com转载请标明出处.