该【初一数学下册相交线与平行线检测及解析1 】是由【知识徜徉土豆】上传分享,文档一共【31】页,该文档可以免费在线阅读,需要了解更多关于【初一数学下册相交线与平行线检测及解析1 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。一、,的平分线的反向延长线和的平分线的反向延长线相交于点,则()A. B. C. ,若边,则翻折角与一定满足的关系是()A. B. C. ,已知,平分,平分,则下列判断:①;②平分;③;④中,正确的有() ,已知直线AB,CD被直线AC所截,AB∥CD,E是平面内CD上方的一点(点E不在直线AB,CD,AC上),设∠BAE=,∠DCE=.下列各式:①+,②﹣,③﹣,④180°﹣﹣,⑤360°﹣﹣中,∠AEC的度数可能是()A.①②③ B.①②④⑤ C.①②③⑤ D.①②③④⑤,C为的边OA上一点,过点C作交的平分线OE于点F,作交BO的延长线于点H,若,现有以下结论:①;②;③;④.结论正确的个数是() 、小亮、小刚一起研究一道数学题,如图,已知,.小明说:“如果还知道,则能得到.”小亮说:“把小明的已知和结论倒过来,即由,可得到.”小刚说:“连接,如果,则能得到.”则说法正确的人数是() ,直线,被直线所截,,,则的度数为().° ° ° °,直线,,则等于()A. B. C. ,,平分,,点在的延长线上,连接,,下列结论:①;②平分;③;④.其中正确的个数为() ,点在延长线上,、交于,且,,比的余角小,为线段上一动点,为上一点,且满足,:①;②平分;③;④() 、①所示叠成,含角的三角尺固定不动,将含角的三角尺绕顶点A顺时针转动,使与三角形的一边平行,如图②,当时,,,已知A1BAnC,则∠A1+∠A2+…+∠An等于__________(用含n的式子表示).,△ABC中,∠C=90°,AC=5cm,CB=12cm,AB=13cm,将△ABC沿直线CB向右平移3cm得到△DEF,DF交AB于点G,,主道路是平行,即PQ∥,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,,,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动_________秒,,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=60°,点D在边OA上,将图中的△COD绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,在第________秒时,,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=,直线,将含有角的三角板的直角顶点放在直线上,若,,将一张长方形纸片ABCD沿EF折叠,点D、C分别落在点D'、C′的位置处,若∠1=56°,则∠,,,,,分别作和的角平分线交于点,称为第一次操作,则_______;接着作和的角平分线交于,称为第二次操作,继续作和的角平分线交于,称方第三次操作,如此一直操作下去,、,AB∥CD,点E为射线FG上一点.(1)如图1,若∠EAF=25°,∠EDG=45°,则∠AED= .(2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请说明你的结论;(3)如图3,当点E在FG延长线上时,DP平分∠EDC,∠AED=32°,∠P=30°,求∠,如图1,射线PE分别与直线AB,CD相交于E、F两点,∠PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设∠PFM=α°,∠EMF=β°,且(40﹣2α)2+|β﹣20|=0(1)α= ,β= ;直线AB与CD的位置关系是;(2)如图2,若点G、H分别在射线MA和线段MF上,且∠MGH=∠PNF,试找出∠FMN与∠GHF之间存在的数量关系,并证明你的结论;(3)若将图中的射线PM绕着端点P逆时针方向旋转(如图3),分别与AB、CD相交于点M1和点N1时,作∠PM1B的角平分线M1Q与射线FM相交于点Q,问在旋转的过程中的值是否改变?若不变,请求出其值;若变化,:小亮同学遇到这样一个问题:已知:如图甲,ABCD,E为AB,CD之间一点,连接BE,DE,得到∠:∠BED=∠B+∠D.(1)小亮写出了该问题的证明,:过点E作EFAB,则有∠BEF=.∵ABCD,∴,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线ab,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示).:如图,直线AB//CD,直线EF交AB,CD于P,Q两点,点M,点N分别是直线CD,EF上一点(不与P,Q重合),连接PM,MN.(1)点M,N分别在射线QC,QF上(不与点Q重合),当∠APM+∠QMN=90°时,①试判断PM与MN的位置关系,并说明理由;②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度数.(提示:过N点作AB的平行线)(2)点M,N分别在直线CD,EF上时,请你在备用图中画出满足PM⊥MN条件的图形,并直接写出此时∠APM与∠QMN的关系.(注:此题说理时不能使用没有学过的定理),.点在上,点在上.(1)如图1中,、、的数量关系为:;(不需要证明);如图2中,、、的数量关系为:;(不需要证明)(2)如图3中,平分,平分,且,求的度数;(3)如图4中,,平分,平分,且,则的大小是否发生变化,若变化,请说明理由,若不变化,求出么的度数.【参考答案】***试卷处理标记,请不要删除一、:A【分析】分别过、作的平行线和,根据平行线的性质和角平分线的性质可用和分别表示出和,从而可找到和的关系,结合条件可求得.【详解】解:如图,分别过、作的平行线和,,,,,,,,,又,,,,故选:A.【点睛】本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补,④,.:B【分析】根据平行可得出∠DAB+∠CBA=180°,再根据折叠和平角定义可求出.【详解】解:由翻折可知,∠DAE=2,∠CBF=2,∵,∴∠DAB+∠CBA=180°,∴∠DAE+∠CBF=180°,即,∴,故选:B.【点睛】本题考查了平行线的性质和角平分线的性质,:B【分析】根据平行线的性质求出,根据角平分线定义和平行线的性质求出,推出,再根据平行线的性质判断即可.【详解】∵,∴,∴正确;∵,∴,∵平分,平分,∴,,∴,∴,∴,∴根据已知不能推出,∴错误;错误;∵,,∴,∵,∴,∴,∴正确;即正确的有个,故选:.【点睛】本题考查了平行线的性质和判定,角平分线定义的应用,:C【分析】根据点E有6种可能位置,分情况进行讨论,依据平行线的性质以及三角形外角性质进行计算求解即可.【详解】解:(1)如图1,由AB∥CD,可得∠AOC=∠DCE1=,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=﹣.(2)如图2,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=,∠2=∠DCE2=,∴∠AE2C=+.(3)如图3,由AB∥CD,可得∠BOE3=∠DCE3=,
初一数学下册相交线与平行线检测及解析1 来自淘豆网m.daumloan.com转载请标明出处.