该【轴对称填空选择单元测试卷解析版 】是由【海洋里徜徉知识】上传分享,文档一共【32】页,该文档可以免费在线阅读,需要了解更多关于【轴对称填空选择单元测试卷解析版 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。一、八年级数学全等三角形填空题(难),在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BOC=90°+∠A;③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,.(填序号)【答案】①②③【解析】【分析】由在△ABC中,∠ABC和∠ACB的平分线相交于点O,根据角平分线的定义与三角形的内角和定理,即可求出②∠BOC=90°+∠A正确;由平行线的性质和角平分线的定义可得△BEO和△CFO是等腰三角形可得①EF=BE+CF正确;由角平分线的性质得出点O到△ABC各边的距离相等,故③正确;由角平分线定理与三角形的面积求法,设OD=m,AE+AF=n,则△AEF的面积=,④错误.【详解】在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°-∠A,∴∠BOC=180°-(∠OBC+∠OCB)=90°,故②∠BOC=90°+∠A正确;在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠EOB,∠OCB=∠OCF,∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,即①EF=BE+CF正确;过点O作OM⊥AB于M,作ON⊥BC于点N,连接AO,∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,即③点O到△ABC各边的距离相等正确;∴S△AEF=S△AOE+S△AOF=AE·OM+AF·OD=OD·(AE+AF)=mn,故④错误;故选①②③【点睛】此题主要考查角平分线的性质,,中,,,,点从点出发沿路径向终点运动,终点为点,点从点出发沿路径向终点运动,终点为点,点和分别以每秒和的运动速度同时开始运动,两点都要到达相应的终点时才能停止运动,分别过和作于,,要使以点,,为顶点的三角形与以点,,为顶点的三角形全等,则的值为______.【答案】或7或8【解析】【分析】易证∠MEC=∠CFN,∠MCE=∠=NC,就可得到△MEC与△CFN全等,然后只需根据点M和点N不同位置进行分类讨论即可解决问题.【详解】①当0≤t<4时,点M在AC上,点N在BC上,如图①,此时有AM=2t,BN=3t,AC=8,BC==NC即8?2t=15?3t时全等,解得t=7,不合题意舍去;②当4≤t<5时,点M在BC上,点N也在BC上,如图②,若MC=NC,则点M与点N重合,即2t?8=15?3t,解得t=;当5≤t<时,点M在BC上,点N在AC上,如图③,当MC=NC即2t?8=3t?15时全等,解得t=7;④当≤t<时,点N停在点A处,点M在BC上,如图④,当MC=NC即2t?8=8,解得t=8;综上所述:当t等于或7或8秒时,以点M,E,C为顶点的三角形与以点N,F,:或7或8.【点睛】本题主要考查了全等三角形的判定以及分类讨论的思想,可能会因考虑不全面而出错,△ABC中,∠C=90°,∠A的平分线AD分对边BD,DC的长度比为3:2,且BC=20cm,则点D到AB的距离是_____cm.【答案】8【解析】【分析】根据题意画出图形,过点D作DE⊥AB于点E,由角平分线的性质可知DE=CD,根据角平分线AD分对边BC为BD:DC=3:2,且BC=10cm即可得出结论.【详解】解:如图所示,过点D作DE⊥AB于点E,∵AD是∠BAC的平分线,∠C=90°,∴DE=CD.∵BD:DC=3:2,且BC=10cm,∴CD=20×=8(cm).故答案为:8.【点睛】本题考查的是角平分线的性质,△ABC中,∠ABC=60°,∠ACB=70°,若点O到三边的距离相等,则∠BOC=_____°.【答案】【解析】【分析】先画出符合的图形,再根据角平分线的性质和三角形的内角和定理逐个求出即可.【详解】解:①如图,∵点O到三边的距离相等,∴点O是△ABC的三角的平分线的交点,∵∠ABC=60°,∠ACB=70°,∴∠OBC=∠ABC=30°,∠ACB=35°,∴∠BOC=180°﹣∠OBC﹣∠OCB=115°;②如图,∵∠ABC=60°,∠ACB=70°,∴∠EBC=180°﹣∠ABC=120°,∠FCB=180°﹣∠ACB=110°,∵点O到三边的距离相等,∴O是∠EBC和∠FCB的角平分线的交点,∴∠OBC=∠EBC=60°,∠FCB=55°,∴∠BOC=180°﹣∠OBC﹣∠OCB=65°;③如图,∵∠ABC=60°,∠ACB=75°,∴∠A=180°﹣∠ABC﹣∠ACB=45°,∵点O到三边的距离相等,∴O是∠EBA和∠ACB的角平分线的交点,∴∠OBA=∠EBA=×(180°﹣60°)=60°,∠ACB=°,∴∠BOC=180°﹣(∠OBA+∠ABC+∠OCB)=180°﹣(60°﹣60°﹣°)=°;如图,此时∠BOC=°,故答案为:.【点睛】此题主要考查三角形的内角和,,在△ABC中,AC=AB,∠BAC=90°,D是AC边上一点,连接BD,AF⊥BD于点F,点E在BF上,连接AE,∠EAF=45°,连接CE,AK⊥CE于点K,交DE于点H,∠DEC=30°,HF=,则EC=______【答案】6【解析】【分析】延长AF交CE于P,证得△ABH≌△APC得出AH=CP,证得△AHF≌△EPF得出AH=EP,得出EC=2AH,解30°的直角三角形AFH求得AH,即可求得EC的长.【详解】如图,延长AF交CE于P,∵∠ABH+∠ADB=90°,∠PAC+∠ADB=90°,∴∠ABH=∠PAC,∵AK⊥CE,AF⊥BD,∠EHK=∠AHF,∴∠HEK=∠FAH,∵∠FAH+∠AHF=90°,∠HEK+∠EPF=90°,∴∠AHF=∠EPF,∴∠AHB=∠APC,在△ABH与△APC中,,∴△ABH≌△APC(ASA),∴AH=CP,在△AHF与△EPF中,,∴△AHF≌△EPF(AAS),∴AH=EP,∠CED=∠HAF,∴EC=2AH,∵∠DEC=30°,∴∠HAF=30°,∴AH=2FH=2×=3,∴EC=2AH=6.【点睛】本题考查了三角形全等的判定和性质,等腰直角三角形的判定和性质,:四边形ABCD中,AB=AD=CD,∠BAD=90°,三角形ABC的面积为1,则线段AC的长度是___________.【答案】2【解析】【分析】过B作BE⊥AC于E,过D作DF⊥AC于F,构造△BAE?△ADF得出BE=AF利用等腰三角形三线合一的性质得出:AF=12AC可得BE=AF=12AC,利用三角形ABC的面积为1进行计算即可.【详解】过B作BE⊥AC于E,过D作DF⊥AC于F,∴∠BEA=∠AFD=90°∴∠2+∠3=90°∵∠BAD=90°∴∠1+∠2=90°∴∠1=∠3∵AB=AD∴△BAE?△ADF∴BE=AF∵AD=CD,DF⊥AC∴AF=12AC∴BE=AF=12AC∴S△ABC=12AC×BE=12AC×12AC=1∴AC=2故答案为:2【点睛】本题考查了利用一线三等角构造全等三角形,以及利用三角形面积公式列方程求线段,,△ABC中,AB=AC,∠BAC=56°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为_____度.【答案】112.【解析】【分析】连接OB、OC,根据角平分线的定义求出∠BAO=28°,利用等腰三角形两底角相等求出∠ABC,根据线段垂直平分线上的点到两端点的距离相等可得OA=OB,再根据等边对等角求出∠OBA,然后求出∠OBC,再根据等腰三角形的性质可得OB=OC,然后求出∠OCE,根据翻折变换的性质可得OE=CE,然后利用等腰三角形两底角相等列式计算即可得解.【详解】如图,连接OB、OC,∵OA平分∠BAC,∠BAC=56°,∴∠BAO=∠BAC=×56°=28°,∵AB=AC,∠BAC=56°,∴∠ABC=(180°﹣∠BAC)=×(180°﹣56°)=62°,∵OD垂直平分AB,∴OA=OB,∴∠OBA=∠BAO=28°,∴∠OBC=∠ABC﹣∠OBA=62°﹣28°=34°,由等腰三角形的性质,OB=OC,∴∠OCE=∠OBC=34°,∵∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE,∴∠OEC=180°﹣2×34°=112°.故答案是:112.【点睛】考查了翻折变换,等腰三角形的性质,线段垂直平分线上的点到两端点的距离相等的性质,三角形的内角和定理,,在平行四边形ABCD中,,F是AD的中点,作,垂足E在线段上,连接EF、CF,则下列结论;;,中一定成立的是______把所有正确结论的序号都填在横线上【答案】【解析】分析:由在平行四边形ABCD中,AD=2AB,F是AD的中点,易得AF=FD=CD,继而证得①∠DCF=∠BCD;然后延长EF,交CD延长线于M,分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF(ASA),得出对应线段之间关系,:①∵F是AD的中点,∴AF=FD,∵在?ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,即∠BCD=2∠DCF;故此选项错误;②延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,
轴对称填空选择单元测试卷解析版 来自淘豆网m.daumloan.com转载请标明出处.