关于分子动力学模拟的
初步认识
摸金校尉
主要内容
分子动力学模拟概述
MD模拟所需条件
势函数与系综
牛顿运动方程及其求解
一、分子动力学模拟概述
为什么要搞MD模拟
Chemistry is no longer a purely experimental science.
实验方法
无法获得过程中粒子微观细节,成本高等
计算机模拟
指导
定义
分子动力学模拟(Molecular Dynamics Simulation):通过计算机对原子核和电子所构成的多体体系中的微观粒子之间相互作用和运动进行模拟,把每一原子核视为在全部其他的原子核和电子所构成的经验势场的作用下按照牛顿定律进行运动,进而得到体系中粒子的运动轨迹,再按照统计物理的方法计算得出物质的结构和性质等宏观性能。
任务:通过求解经典牛顿运动方程,计算一个经典多
体体系的平衡和非平衡性质
系统描述:粒子坐标x,速度(动量)v,受力f,时间t
模拟体系大小:几百到上百万个粒子,对应于几个到几十个nm。
MD模拟的一般过程
构建构型
动力学过程模拟
构型性能计算
结果分析
势函数
系综
初始条件
周期性边界条件
所需条件
MS构建晶胞
等
二、势函数与系综
原子间作用势
对势(Pair potential ):认为原子间的相互作用是两两之间的作用与其他原子的位置无关
多体势(Many-body effects):在多原子体系中一个原子的位置不同将影响其它原子间的有效相互作用
硬球势、Lennard-Jones势、Morse势、Born-Lande势及Johnson势
嵌入原子法(EAM 势)、多体相互作用势(FS势)、TB势等
势函数简介
Lennard-Jones势(LJ)
间距为R的两个原子总势能:
L-J势能曲线
σ和ε为因原子而异的势能参数
势能最低点为r=21/6σ, σ大小表征原子间平衡距离。ε为由势能最低点到势能为0点的差。
排斥项
吸引项
EAM势(嵌入原子法)
系统中能量:
为第j个原子在i个原子处贡献的电荷密度
嵌入能
对势项
是除第i 个原子以外的所有其它原子的核外电子在第 i 个原子处产生的电子云密度之和:
分子动力学模拟 来自淘豆网m.daumloan.com转载请标明出处.