下载此文档

函数及其表示-函数与导数.ppt


文档分类:高等教育 | 页数:约30页 举报非法文档有奖
1/30
下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
1/30 下载此文档
文档列表 文档介绍
该【函数及其表示-函数与导数 】是由【3827483】上传分享,文档一共【30】页,该文档可以免费在线阅读,需要了解更多关于【函数及其表示-函数与导数 】的内容,可以使用淘豆网的站内搜索功能,选择自己适合的文档,以下文字是截取该文章内的部分文字,如需要获得完整电子版,请下载此文档到您的设备,方便您编辑和打印。(1)函数定义设集合A是一个非空的,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,=f(x),x∈A考点分析(2)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A},值域是集合B的子集.(3)函数的三要素:、和.(4)相等函数:如果两个函数的相同,并且完全一致,则这两个函数相等,:、,B是两个非空的集合,如果按照某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,则称对应f:A→,映射是概念的推广,函数是一种特殊的映射,要注意构成函数的两个集合A,,f(x)与g(x)是否为同一函数,为什么?(1)f(x)=lgx,g(x)=lgx2;(2)f(x)=x,g(x)=;(3)f(x)=,g(x)=logaax;(4)f(x)=lgx-2,g(x)=lg.【分析】判断两个函数是否为同一函数,关键是判断它们的对应法则、,【解析】(1)f(x)的定义域为(0,+∞),g(x)的定义域为(-∞,0)∪(0,+∞),定义域不同,故f(x)与g(x)不是同一函数.(2)函数f(x)的值域为(-∞,+∞),g(x)的值域为[0,+∞),值域不同,故f(x)与g(x)不是同一函数.(3)因为f(x)=x(x>0),g(x)=x(x∈R),定义域不同,故f(x)与g(x)不是同一函数.(4)因为f(x)=lgx-2(x>0),g(x)=lg=lgx-2(x>0),所以f(x)与g(x)的对应法则、定义域和值域都分别相同,故它们是同一函数.【评析】(1)只有当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一函数,换言之就是:①定义域不同,两个函数也就不同.②对应法则不同,两个函数也是不同的.③即使定义域和值域都分别相同的两个函数,它们也不一定是同一函数,因为函数的定义域和值域不能唯一地确定函数的对应法则.(2)函数的对应法则可以化简,例如题型一(3)(4)中的函数,再比如函数f(x)=|x|和g(x)=,从表面上看它们的对应法则不同,但实质上是相同的.(3)当一个函数的对应法则和定义域给定后,它的值域便随之确定,所以,函数的三要素可简化为定义域、对应法则两要素.*对应演练*判断下列各组函数是否为同一函数.(1)f(x)=x2+2x-1,g(t)=t2+2t-1;(2)f(x)=,g(x)=x+1;(3)x+1(-1<x<0)x-1(0<x<1),g(x)=f-1(x).(4)f(x)=(1)两函数的定义域、值域、对应法则均相同,所以它们是同一函数.(2)y==x+1,但x≠1,而y=x+1中x∈R,所以它们不是同一函数.(3)函数f(x)=的定义域为{x|x≥0};而函数g(x)=的定义域为{x|x≤-1或x≥0},它们的定义域不同,-1,(0<x<1)x+1,(-1<x<0),f(x)与g(x)定义域、值域、对应法则分别相同,故它们是同一函数.(4)∵g(x)=f-1(x)=考点二映射的概念下列对应是否为从A到B的映射?(1)A=R,B=R,f:x→y=;(2)(3)A={x|x≥0},B=R,f:x→y,y2=x;(4)A={平面α内的矩形},B={平面α内的圆},f:作矩形的外接圆.

函数及其表示-函数与导数 来自淘豆网m.daumloan.com转载请标明出处.

相关文档 更多>>
非法内容举报中心
文档信息
  • 页数30
  • 收藏数0 收藏
  • 顶次数0
  • 上传人3827483
  • 文件大小1.82 MB
  • 时间2025-01-21